1st ARCAP

1st ASEAN REGIONAL CONFERENCE on ANIMAL PRODUCTION 2014

Bridging technology gap for ASEAN animal production

and:

35th ANNUAL CONFERENCE of Malaysian Society of Animal Production (MSAP)
4th-6th June 2014 | Riverside Majestic Hotel Kuching, Sarawak, Malaysia

Organized by:

www.msap.my
BRIDGING TECHNOLOGY GAP FOR ASEAN ANIMAL PRODUCTION

Proceedings of the 1st ASEAN Regional Conference on Animal Production (1st ARCAP)
&
the 35th Annual Conference of Malaysian Society of Animal Production

4 – 6 June 2014

Kuching, Sarawak
MALAYSIA

Editors:

J. M. Panandam
A. R. Alimon
H. Yaakub
H. Wahid
M. A. Omar
W.E. Wan Khadijah

Organised by

Malaysian Society of Animal Production
MALAYSIAN SOCIETY OF ANIMAL PRODUCTION
c/o Department of Animal Science
Universiti Putra Malaysia
43400 UPM, Serdang, Selangor
MALAYSIA
http://www.msap.my
CONTENTS

Preface

xiii

KEYNOTE PAPER

1. Bridging the Technology Gap for ASEAN Livestock Production
 Joachim Otte
 1

PLENARY PAPERS

1. Transforming the Livestock Industry through Research and Effective Knowledge Transfer
 Zakaria Abas
 6

2. Malaysian Livestock Industry and the Technologies Adopted
 Shannmugavelu, S. and A.R. Azizan
 11

3. Economic Transformation Programme: A Perspective on Agriculture
 Faadhullah Suhami Abdul Malik
 13

4. Bridging Technology Gap for Poultry Production in Myanmar
 Saw Plet Saw
 14

5. The Current Situation and New Developments in Dairy and Beef Production in Thailand
 Leenanuruksa, D. Y. Opatpatanakit and W. Yothisirikul
 18

6. Establishment of Artificial Insemination Centre and Its Role in Improving Breeding Efficiency and Genetic Quality of Ruminant in Indonesia
 Gatot Ciptadi
 23

7. High Nutrition and High Embryo Quality: Can We Have Both?
 Kakar, M.A., Ehsanullah Kakar, S. Maddocks and S.K. Walker
 24

8. Raising Healthy Dairy Calves With or Without Technology
 S. I. Kehoe
 30
9. Effects of Cellulolytic Bacteria on Enzyme Production via Solid State Fermentation using PKC as A Substrate
Hassan, U.Z., T.C. Loh, H.L. Foo and A.A. Samsudin

10. Improvement of Nutritive Quality of Palm Kernel Cake by Cellulolytic Bacteria Through Solid State Fermentation
Alshelmani, M.I., T.C. Loh, H.L. Foo, W.H. Lau and A.Q. Sazili

11. Effect Of Papaya (Carica Papaya Linnaeus) Leaf on Gas Production using an In Vitro Gas Production Technique
Jafari, S., Y.M. Goh, M.A. Rajion, Y.H. Ahmad and M. Ebrahimi

12. Inhibitory Activity of Postbiotic Produced by Lactobacillus plantarum RS5 using Reconstitute Media Supplemented with Different Levels of Inulin
Kareem, K.Y., T.C. Loh, H.L. Foo, M.F. Ooi, A. Asmara and H. Akit

13. Phage Therapy for Biocontrol of Salmonellosis in Broiler Chickens
Slee, C.C., C.L. Wong, W.S. Tan, M. Hair-Bejo, A. Jalila and Y.W. Ho

14. Can Corynebacterium pseudotuberculosis Survive in the Environment, Fomites and Flies within Infected Herd?

15. Smartphone Application Implementation Framework for Livestock and Poultry Disease Surveillance and Monitoring
Nor Arlina, A.G., M.S. Shamsir and A.R. Sohayati

16. Moringa Foliage (Moringa Oleifera L.): A Potential source of Omega-3 Fatty Acid and Antioxidants

17. Supplementation of Perlawit (Permen Lumpur Sawit) and Temulawak Combination to Increase Bali Cattle Productivity
Sri Atmita, A., M. Afdal, U. Amri and Z. Zein

18. Assessment of Water Quality for Livestock Drinking from 2009 to 2013
Lily Suhaida, M.S., N.N. Yeoh, J. Bohari and M. Ramlan

19. Evaluation of Feed Quality on Livestock Concentrates From 2008 To 2012
Mohammad Bohari, J., M.S. Lily Suhaida, A. Zuraidah, M.N. Noor Akmi, A.P. Norlindawati and M. Ramlan
SUPPLEMENTATION OF PERLAWIT (PERMEN LUMPUR SAWIT) AND TEMULAWAK COMBINATION TO INCREASE BALI CATTLE PRODUCTIVITY

Sri Arnita, A.*, M. Afdal, U. Amri and Z. Zein

Department of Animal Science, Jambi University, Jambi Province, Indonesia.
*Email:sriarnitaa@yahoo.com

Jambi Province is one of the largest oil palm areas in Indonesia. According to the Plantation Department, in 2004, the total area for plantation was 337,000 ha. With that vast plantation area, the total production of palm oil can reach 719,568 ton/year. This situation will lead to a huge amount of oil palm wastes, such as the palm oil sludge which is predicted to be more than 35,978.4 ton/year. This palm oil sludge was the product of the extraction of crude palm oil (CPO).

In the other side, it is the government policy to increase the economic status of the rural society through enhancing the development of animal husbandry subsector through the spreading of livestock assistance in share dividend (Gaduhan) pattern. In the share dividend pattern, the system that applied is dividing the dividends based on the cattle weight achievement. The profit that can be obtained by a farmer will be determined by how much the increased weight that resulted at the end of the share dividend (Gaduhan) pattern. The increase of weight from the cattle that are raised will depend on the feed that was given over the production period. At the level of cattle breeder, the husbandry practice is generally the traditional method of whereby the main feed for the animals depend mainly on the natural grasses and native forages. As a result, the growth of the cattle cannot be optimized.

To solve the problems of low productivity and poor growth rates, attempts are taken to determine how oil palm by-products can be used to feed the cattle through the use of feed biotechnology. The technology we used processes the feed in the form of candy or a block to produce a feed supplement for the cattle (1). The use of oil palm sludge as the main ingredient mixed with the other feed in the specific proportion so that a multinutrient feed block is produced. The oil palm processing through this modified technique produced a product called “Perlavit”. To improve the quality of perlavit product, temulawak (Circum xanthorrhiza) is added to enhance the growth performance of the cattle. In this study several combination of perlavit and temulawak was used to determine the optimum level of temulawak (Cx) in the block.

The aim of this study was to evaluate the response to supplementation of perlavit-Cx nutrient block on intake and growth of Bali cattle. Twelve Bali cattle was allocated into four treatments, and given grass based diets supplemented with perlavit + 15% Cx (P1), perlavit + 20% Cx(P2), Perlavit + 25% Cx(P3) and (Perlavit + 30% Cx(P4) in a Randomized Block Design. Perlavit block were made using palm oil sludge mixed with molasses, rice bran, corn, limestone, urea, salt, TSP, mineral mix and cement (2). The variables that were measured were dry matter intake of ration, body weight gain, ration efficiency and the production cost (Indonesian rupiah) of perlavit - Cx/kg. (Table 1).

Results showed that there was no significant difference in dry mater intake, body weight gain and feed efficiency in cattle fed the treatment diets. However, perlavit + 15% Cx combination can be recommended to be used at farm level because the cost of perlavit + 15% Cx was lower than the other diets.
Table 1. Dry matter intake, body weight gain, feed efficiency and cost of production of Perlawit+Cx (rupiah/kg)

<table>
<thead>
<tr>
<th>Observation's Variable</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter of grass</td>
<td>17.86</td>
<td>16.97</td>
<td>16.10</td>
<td>15.68</td>
</tr>
<tr>
<td>(kg/unit/day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption of Perlawit</td>
<td>0.550</td>
<td>0.570</td>
<td>0.596</td>
<td>0.568</td>
</tr>
<tr>
<td>(kg/unit/day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry matter intake</td>
<td>18.41a</td>
<td>17.50a</td>
<td>16.69a</td>
<td>16.28a</td>
</tr>
<tr>
<td>(kg/unit/day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BWG (kg/unit/day)</td>
<td>0.54a</td>
<td>0.55a</td>
<td>0.61a</td>
<td>0.44a</td>
</tr>
<tr>
<td>Feed Efficiency (%)</td>
<td>3.03a</td>
<td>3.13a</td>
<td>3.64a</td>
<td>2.71a</td>
</tr>
<tr>
<td>Production Cost for 1 kg Perlawit (Rp)</td>
<td>6652.45</td>
<td>7043.10</td>
<td>7433.75</td>
<td>7824.40</td>
</tr>
</tbody>
</table>

Notes: Means with similar superscript within the same row are not significantly different (P>0.05)

1) Anis Wahde. 2001. Urea Molasses Block Supplementation (UMMB) for the Cultivation of Cattle Breeder. Journal delivered at National Seminar related to: The Application of Nuclear Technology for Human’s Prosperity: Nuclear Technology Application in Agriculture and Healthiness Sector at Agricultural Faculty, Lampung University, Banjarbaru.
