Analysis

Land Property Rights, Agricultural Intensification, and Deforestation in Indonesia

Christoph Kubitza, Vijesh V. Krishna, Kira Urban, Zulkifli Alamsyah, Matin Qaim

Department of Agricultural Economics and Rural Development, University of Goettingen, Platz der Goettinger Sieben 5, 37073 Goettingen, Germany
International Maize and Wheat Improvement Center, Socioeconomics Program, Texcoco CP 56237, Mexico
Chair of Forest Inventory and Remote Sensing, University of Goettingen, Buesgenweg 5, 37077 Goettingen, Germany
Department of Agricultural Economics, University of Jambi, Jalan Raya Jambi, Muara Bulian km 15, Mendalo Darat, 36361 Jambi, Indonesia
Center of Biodiversity and Sustainable Land Use, University of Goettingen, 37073 Goettingen, Germany

ARTICLE INFO

Keywords:
Rubber
Land-use change
Land titles
Deforestation
Land-sparing agricultural intensification
Smallholders

ABSTRACT

The expansion of agricultural land remains one of the main drivers of deforestation in tropical regions. Stronger land property rights could possibly enable farmers to increase input intensity and productivity on the already cultivated land, thus reducing incentives to expand their farms by deforesting additional land. This hypothesis is tested with data from a panel survey of farm households in Sumatra. The survey data are combined with satellite imageries to account for spatial patterns, such as historical forest locations. Results show that plots for which farmers hold formal land titles are cultivated more intensively and are more productive than untitled plots. However, due to land policy restrictions, farmers located at the historic forest margins often do not hold formal titles. Without land titles, these farmers are less able to intensify and more likely to expand into the surrounding forest land to increase agricultural output. Indeed, forest closeness and past deforestation activities by householders are found to be positively associated with current farm size. In addition to improving farmer’s access to land titles for non-forest land, better recognition of customary land rights and more effective protection of forest land without recognized claims could be useful policy responses.

1. Introduction

Deforestation remains a widespread problem, especially in tropical regions. Between 2010 and 2015, about 6 million hectares of tropical forest were lost annually (FAO, 2016), entailing severe negative consequences for biodiversity, ecological systems, and climate stability (Fearnside, 2005; Butler and Laurance, 2009; Wilcove et al., 2013; Barnes et al., 2014). Agricultural area expansion is one of the main drivers of deforestation (Gibbs et al., 2010), and demand for agricultural output will further increase due to population and income growth. In addition to food, global demand for feed, fuel, and other biomass-derived renewable resources will grow substantially over the coming decades (Alexandratos and Bruinsma, 2012; Valin et al., 2014). These developments threaten the conservation of the remaining tropical forest (Laurance et al., 2014). Increasing agricultural yields on the land already cultivated, through higher input intensity and use of better technology, could be one important way to meet the rising demand and reduce further deforestation (Green et al., 2005; Ewers et al., 2009; Phalan et al., 2011a; Stevenson et al., 2013). To be sure, agricultural intensification is not a magic bullet to conserve tropical forest and related ecosystem functions (Steffan-Dewenter et al., 2007; Perfecto and Vandermeer, 2010; Tscharntke et al., 2012). Effects will vary with the type of intensification and also with the institutional and policy context in a particular setting. Better knowledge is required about how land-sparing agricultural intensification can be implemented locally, and why past efforts have often failed. Empirical research in this direction is scant.

Here, we propose that land property rights are fundamental for agricultural production and deforestation outcomes. Land is the main source of farmers’ livelihoods and also a major means for accumulating and inheriting wealth. The institutions shaping access, use, and transfer of land are hence central for farmers’ decision-making (Deininger and Feder, 2001). Ownership regulations for forest land and for agricultural land often differ. The available literature on the links between land property rights and deforestation focuses primarily on the effects of secure tenure for forest land (Araujo et al., 2009; Damnyag et al., 2012; Liscow, 2013; Robinson et al., 2014). For agricultural land, studies have analyzed effects of tenure security on input intensity and crop productivity (Deininger et al., 2011; Fenske, 2011; Bellemare, 2013), yet without linking this to potential deforestation outcomes. To address this...
gap, we use comprehensive data from Sumatra, Indonesia, one of the hotspots of recent rainforest loss due to agricultural area expansion (Margono et al., 2014; Gatto et al., 2015; Clough et al., 2016). Data from a farm household survey, a village survey, and satellite imageries are combined to examine relationships between land ownership rights, agricultural production intensity, and farm size expansion into forest areas.

In Indonesia, small farms as well as large logging and agribusiness companies contribute to deforestation (Rudel et al., 2009a; Cacho et al., 2014). Overall, the share of land deforested by companies is larger than the share of land deforested by smallholder farmers. While precise data are not available, smallholders may have contributed < 20% to overall deforestation in Indonesia in recent decades (Lee et al., 2014). However, there are at least two reasons why a focus on small farms – as taken in this study – is relevant nevertheless from a policy perspective. First, in Indonesia the role of smallholders in cultivating plantation crops, such as oil palm and rubber, continues to grow (Euler et al., 2017). Second, deforestation by smallholder farms is more difficult to monitor and control (Krishna et al., 2017b; Kubitza et al., 2018). Whereas large companies usually operate based on government concessions, smallholder decisions to clear forest land are individual responses to various incentives and constraints. Such behavioral responses need to be better understood, in order to design and implement effective policies.

For private farms, land titles can increase agricultural intensity and productivity through three effects (Feder and Feeny, 1991; Besley, 1995; Deininger et al., 2011). First, the assurance effect, incentivizing higher investment because farmers are more secure to also reap the benefits from long-term measures to improve land quality and yield potential. Second, the collateralization effect, allowing better access to investment capital because land titles can be used as collateral in formal credit markets. Third, the realizability effect, resulting from more efficient land allocation given that titled land facilitates land market transactions. The empirical literature largely confirms these effects (Sanerje et al., 2002; Goldstein and Udry, 2006; Holden et al., 2009; Deininger et al., 2011; Fenske, 2011; Grimm and Klasen, 2015; Lawry et al., 2016), although in some cases the influence of land titling or more secure property rights was found to be insignificant (Quisumbing and Otsuka, 2001; Brasselle et al., 2002; Jacoby and Minten, 2007; Bellemare, 2013).

An increase in farm productivity induced through land titles could reduce deforestation (Angelsen and Kaimowitz, 2001). Higher output from the already cultivated land reduces the pressure to convert additional forest land. Also, a more productive agricultural sector could spur broader economic development, reducing population growth, enhancing non-agricultural income opportunities for rural households, and improving land-governance capacities and institutions. Empirical evidence for these types of effects is scarce, although a few studies show indeed that higher farm productivity can help spare natural habitat from agricultural conversion (Barbier and Burgess, 1997; Evers et al., 2009; Phalan et al., 2011b). On the other hand, agricultural productivity growth could also be associated with higher rates of deforestation, for instance, by increasing the cost of forest conservation programs or by stimulating in-migration and road infrastructure investments in rural areas (Maertens et al., 2006; Phelps et al., 2013). Better understanding the complexities in concrete situations can help design appropriate policies aimed at promoting more sustainable development.

In Indonesia, much of the land that farmers use is not formally titled (Krishna et al., 2017b). Privately owned land can be titled, but the costs for farmers are relatively high. Additionally, farmers located close to the forest suffer from ambiguous ownership structures. Most of the forest land is formally owned by the state and not eligible for private titling (Agrawal et al., 2008). But the boundaries are not always clear-cut. Some of the land that farmers have cultivated for long officially counts as forest land. Moreover, local communities have customary claims and deforest land even when the newly obtained plots cannot be titled (Resosudarmo et al., 2014). The motivation to deforest will likely increase when farmers have no titles for their already cultivated land and therefore limited ability and incentives to intensify production.

To answer the question whether providing secure titles for agricultural land could help to reduce deforestation, two sub-questions will have to be addressed. First, do land titles increase agricultural intensity and productivity? Second, does higher productivity on the already cultivated land reduce farmers’ incentives to clear additional forest land? The first sub-question will be addressed by comparing input use and crop productivity on farms with and without land titles and controlling for other relevant factors. The second sub-question is less straightforward to answer, because this would require farm-level data on crop productivity in the past, which we do not have. However, we address this sub-question indirectly by analyzing the relationship between the possession of land titles, historical forest coverage, deforestation activities of farm households, and farm size in a spatially explicit way. In addition, we look at the association between current crop productivity and farm size, which – together with the other results – may allow some cautious conclusions on the role of land titles for deforestation and the underlying mechanisms.

2. Data

2.1. Socioeconomic Data

This research builds on data collected in Jambi Province on the island of Sumatra, Indonesia. Jambi has been one of the regions with rapid loss of tropical rainforest over the last few decades. Forest cover in Jambi declined from about 48% in 1990 to 30% in 2013 (Drescher et al., 2016). Nevertheless, 43% of Jambi’s total area was officially categorized as state forest in 2000 (Komarudin et al., 2008). Agricultural production in Jambi is dominated by plantation crops, especially rubber (Hevea brasiliensis) and oil palm (Elaeis guineensis). Rubber is primarily grown by local farmers with only some involvement of large-scale companies. Companies are more involved in oil palm, but even in oil palm > 40% of the area is cultivated by smallholder farmers (Euler et al., 2017). That smallholders contribute to deforestation in Jambi in a significant way was underlined in a recent study (Krishna et al., 2017b), who showed that 18% of the rubber and oil palm plots cultivated by smallholders were acquired through direct forest appropriation.

A survey of farm households was conducted in Jambi in two rounds, 2012 and 2015, as part of a larger interdisciplinary research project (Drescher et al., 2016). A multi-stage sampling framework was used to obtain a representative sample of local farm households. At the first stage, five regencies of Jambi located in tropical lowland rainforest areas were selected. At the second stage, a total of 40 villages were randomly selected in these five regencies. In addition, five villages, where more intensive measurements by other teams of the same research project were ongoing (Drescher et al., 2016), were purposively selected, resulting in a total of 45 villages. In these villages, around 700 households were randomly selected proportional to village size. There are two types of villages in Jambi, autochthonous and transmigrant villages. Transmigrant villages were established as part of the government’s transmigration program (Gatto et al., 2017). Most households in transmigrant villages were allocated titled land by the state and started producing plantation crops under contract with one of the large public or private companies. Hence, the institutional and agricultural production conditions are quite different. In this research, we only consider the 34 autochthonous villages in the sample, with 473 farm household observations in 2015 (and 471 household observations in 2012). Out of these, around 25% are migrants (Table A1 in the Online Appendix), but these migrants in autochthonous villages did not come as part of the government’s transmigration program (Gatto et al., 2015). Most of the households in the two survey rounds are identical. The attrition rate
between 2012 and 2015 was 6%. Households that could not be surveyed again in 2015 (mostly due to out-migration) were replaced with other randomly selected households in the same villages.

In both survey rounds, household heads were interviewed with a structured questionnaire, capturing a wide range of variables related to the households’ socioeconomic situation and the institutional context (Euler et al., 2017; Krishna et al., 2017a). Details about the different plots owned and cultivated by the farm households were also collected. In 2015, the 473 households cultivated a total of 902 plots with plantation crops; out of these 690 were cultivated with rubber, the rest with oil palm. For all these plots, data on general plot characteristics, such as size, location, and status of land titling, were elicited. In addition, detailed input-output data were captured for all plots in 2012 and for a random sub-sample of plots in 2015. For the analysis of agricultural productivity and intensity, we concentrate on productive rubber plots (those where the trees are old enough such that rubber is already being harvested). Input-output relationships in rubber and oil palm are quite different, so combining both crops in the same models would not make sense. Besides the interviews with household heads, village representatives were interviewed in all sample villages to capture data on village size, ethnic composition, and other village-level characteristics.

2.2. Soil and Remote Sensing Data

In the farm household survey, respondents were asked to classify the soil fertility on each of their plots as low, medium, or high. In addition to these data on perceived soil quality, soil samples were taken in 2012 for a randomly selected sub-sample of 92 rubber plots. These soil samples were taken and analyzed by a different team of researchers (Guillaume et al., 2016). We use topsoil properties, such as bulk density, carbon content, and carbon/nitrogen ratio as additional explanatory variables in the rubber production models.

Land cover maps of Jambi Province from the years 1990 and 2013 were obtained using multi-temporal Landsat TM and OLI satellite imageries with a spatial resolution of 30×30 m. Land cover classification is based on automatic classification and additional qualitative, visual interpretation to reduce miss-classifications (Melati et al., 2014). In this research, we are particularly interested in the share of forest in the vicinity of the sample households, which we determined by evaluating land cover classifications in circles with specific radius around the households’ residence. We use different alternatives with 2 km, 5 km, and 10 km radius. Households with a high share of forest in their vicinity are considered as being located at the forest margins.

3. Econometric Methods

The analysis is done in three steps. First, we present models that analyze the effect of land titles on agricultural productivity. Second, we use similar models to analyze effects of land titles on agricultural intensity (input use). Third, we examine spatial patterns by developing and estimating models to analyze the relationships between historic forest margin, possession of land titles, deforestation activities, and farm size.

3.1. Models to Analyze Agricultural Productivity

To analyze the effect of land titles on productivity in rubber, we estimate household-level panel regression models of the following type:

$$\ln(PR_i) = \beta_0 + \beta_1 LT_{pit} + \beta_2 X_{pit} + \mu_i + \epsilon_{pit} \quad \text{(household level)}$$

(1)

where PR_i is total annual rubber yield per hectare of household i at time t. LT_{pit} is the share of household i’s land cultivated with plantation crops that had a systematic land title at time t. The share can vary between 0 and 1. X_{pit} is a vector of other farm and household characteristics that may also influence rubber yields, such as farm size, age, gender, and education of the household head, and a wealth index. The wealth index was constructed based on ownership of the following assets: television, different types of vehicles, refrigerator, and washing machine. A principal component analysis was used to determine the weight of each asset in the wealth index (Filmer and Pritchett, 2001). μ_i is the unobserved time-invariant heterogeneity of the model, while ϵ_{pit} is the id error term.

We also estimate similar models at the plot level:

$$\ln(PR_{pit}) = \beta_0 + \beta_1 LT_{pit} + \beta_2 X_{pit} + \mu_{pit} + \epsilon_{pit} \quad \text{(plot level)}$$

(2)

where PR_{pit} is the annual rubber yield per hectare on plot i of household i at time t. LT_{pit} is a dummy variable taking the value 1 if the plot was systematically titled at time t. X_{pit} includes additional plot characteristics such as age of the rubber trees and variables related to plot location.

Due to the sampling framework used, households and plots are clustered at the village level. We account for possible heteroscedasticity by using cluster-corrected standard errors (Pepper, 2002; Cameron et al., 2011). For interpretation of the estimation coefficients, functional form has to be considered. SLT_{pit} in Eq. (1) is a continuous variable, so that β_1 is interpreted as the percentage effect on rubber yield. LT_{pit} in Eq. (2) is a dummy variable, so that the percentage effects is calculated as $\exp[\beta_1 - 0.5 \times \text{Var}(\beta_1)] - 1$ (van Garderen and Shah, 2002).

The models in Eqs. (1) and (2) are estimated with random effects (RE) panel estimators. Studies with micro-level data to assess the effects of land titling often struggle with endogeneity issues (Brasselle et al., 2002). Endogeneity bias occurs when unobserved characteristics are jointly correlated with land titling and crop productivity. Valid instruments for land titles, which are exogenous and fulfill the exclusion restrictions, are usually hard to find (Fenske, 2011; Bellemare, 2013; Grimm and Klasen, 2015). We use different strategies to test for endogeneity and reduce related bias to the extent possible. First, we include a wide range of plot- and household-level control variables to reduce the likelihood of unobserved heterogeneity. In robustness checks, we also include various measures of soil quality, which has rarely been done in previous research (Bellemare, 2013). Second, in addition to using random effects, we also estimate the productivity models with fixed effects (FE) estimators and balanced plot- and household-level panel data. The variation in land titling within plots and households between 2012 and 2015 is small, but sufficient to obtain FE estimates. We use the Hausman test (Wooldridge, 2002) to compare between the RE and FE models (Table A2). Test results fail to reject the hypothesis that the RE models produce consistent estimates. Third, in addition to model estimates with all observations, we split the sample into migrants and non-migrants and estimate separate models for these two groups. We expect heterogeneous impacts of land titling, because customary land claims that apply to autochthonous people do not apply to migrants from outside the region.

3.2. Models to Analyze Agricultural Intensity

To analyze the effect of land titles on intensity of rubber production, we estimate plot-level panel regression models of the following type:

$$\ln(INV_{pit}) = \beta_0 + \beta_1 LT_{pit} + \beta_2 X_{pit} + \mu_{pit} + \epsilon_{pit} \quad \text{(plot level)}$$

(3)

$$\ln(LS_{pit}) = \beta_0 + \beta_1 LT_{pit} + \beta_2 X_{pit} + \mu_{pit} + \epsilon_{pit} \quad \text{(plot level)}$$

(4)

where INV_{pit} is total annual expenditures on material inputs applied per hectare (ha) on plot i by household i at time t. Material inputs include chemical fertilizers and pesticides (incl. herbicides). LS_{pit} is annual labor input (incl. family and hired labor) measured in hours per ha. The other variables are defined as above. Since > 50% of the sample farmers did not use any material inputs during the survey years, we do
not take logs of INV_{pi} and use a linear functional form instead. Given censoring of the dependent variable at 0, we use a Tobit specification for the model in Eq. (3). To test the effect of INV_{pi} and LS_{pi} on crop productivity, we also estimate additional specifications of Eq. (2) with these inputs included as explanatory variables.

3.3. Spatial Regression Models

To estimate the effect of historical forest closeness on the probability of holding a land title, we estimate the following plot-level probit model:

$$P(LT_{pi}) = \beta_0 + \beta_1 F_{vi} + \beta_2 Z_{pi} + \beta_3 Z_{vi} + \beta_4 Z_{v} + \epsilon_{pi} \quad \text{(plot level)}$$

(5)

where LT_{pi} is a dummy indicating whether or not plot p of household i in village v was systematically titled in 2015, and F_{vi} is the share of forest land in 1990 in a circle with specific radius around the household residence. F_{vi} can take values between 0 (no forest in 1990) to 1 (completely forested in 1990). The reference year 1990 was chosen because most of the formal land classifications in Indonesia took place in the 1980s (Indrarto et al., 2012). We estimate separate models, using radii of 2 km, 5 km, and 10 km to construct F_{vi}. In each of these models, plots that are located outside the specific radius are excluded from estimation. A further robustness check is performed, replacing F_{vi} with a binary variable indicating if the plot was acquired by the household through deforestation. Z_{pi}, Z_{vi}, and Z_{v} are further plot-, household-, and village-level controls. Eq. (5) includes both rubber and oil palm plots.

It is likely that land titling is also affected by spatial factors such as local policies, distances to roads and markets, or environmental conditions. This can possibly lead to spatial dependency in the models in Eq. (5). All models were tested for spatial autocorrelation using Moran’s I, Anselin’s, and Florax’s Lagrange Multiplier tests (Baltagi, 2003). These tests failed to reject the hypothesis of zero spatial autocorrelation, so we estimate spatial lag models of the following type:

$$\ln(F_{Si}) = \rho W \ln(F_{Si}) + \beta_0 + \beta_1 F_{vi} + \beta_2 V_{vi} + \beta_3 V_{v} + \epsilon_{vi} \quad \text{(household level)}$$

(6)

where F_{Si} is total farm size of household i in village v measured in hectares, F_{vi} is the share of forest land in 1990 (as defined above), V_{vi} and V_{v} are household- and village-level controls. W is an $N \times N$ spatial weights matrix ($N =$ number of households) based on the inverse Euclidean distance between the households’ residence. The parameter ρ measures the degree of spatial correlation. W is row standardized, such that for each i, $\sum w_j = 1$ (Baltagi, 2003). The spatial lag $pW \ln (F_{Si})$ can be interpreted as a weighted average of the farm sizes of neighboring households. For comparison, spatial error and ordinary least squares models are reported in Table A4.

4. Results

4.1. Descriptive Statistics

The average size of farms in our sample in 2015 was around 4 ha. This refers to the land cultivated, regardless of whether or not the farmer formally owns the different plots. Locations of the farm households are depicted in Fig. 1 (Maps 1 and 2). Responses during the survey interviews suggest that households are actively engaged in deforestation. This is also confirmed by land cover maps. In 1990, about 17% of the area within a 5 km radius around farmers’ residence was covered with forest; by 2013, this forest share was reduced to 3%. Much of the previous forest land is now grown with rubber and oil palm. Even
though the area cultivated with oil palm grew faster during the last two decades (Gatto et al., 2015), rubber remains the dominant crop in the study region. About 30% of the sample farms grow oil palm, whereas 86% grow rubber (Table A1). This is also the reason why we focus on rubber for the analysis of crop productivity and production intensity.

Concerning supply chains in the local rubber sector, farmers mostly sell their harvest to traders in the village, who then transport the rubber to the processing factories (Kopp and Brümmer, 2017). Fertilizer, pesticides, and other material inputs can often be bought from the village traders. Alternatively, inputs can be purchased in the next market, which is 5–6 km away from the households’ residence on average (Table A1). Given relatively bad infrastructure conditions in large parts of Jambi, transportation and transaction costs can be substantial, meaning that farm-gate input and output prices are influenced significantly by distance to roads and markets.

Most of the plots that sample farmers cultivate are not formally titled, but held under customary tenure. In 2015, only 10% of the rubber plots had a systematic land title in a particular year, which is 5\% of the total rubber area (Table A2). In 2015, only 10% of the rubber plots had a systematic land title in a particular year. The curves were constructed using locally-weighted time series smoothing.

4.2. Land Titles and Agricultural Productivity

To analyze whether land property rights have an effect on agricultural productivity, we estimated regression models with rubber yield as dependent variable and land titles as explanatory variables, as explained in Eqs. (1) and (2). The main results are shown in Table 1 (full model results with all explanatory variables are shown in Table A2 in the Online Appendix). In all model specifications, systematic land titles have positive and significant coefficients, while sporadic land titles have insignificant effects. In the household-level models, the different rubber plots of a household are combined. Compared to a situation with no land titles, systematic titling of all plots (share of land with systematic title equal to 1) leads to an increase in crop productivity by 35\% (column 1). In column (2), we only include households that migrated to the villages from outside the region. For these households, the productivity effect of systematic land titles is even larger. It is not unexpected that migrants benefit more from land titles. First, migrants often belong to a different ethnicity than autochthonous households.

Table 1

<table>
<thead>
<tr>
<th>Land titles and agricultural productivity.</th>
<th>Household-level models</th>
<th>Plot-level models</th>
<th>Plot-level models with soil quality controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Share of land with systematic title</td>
<td>0.351*</td>
<td>0.566**</td>
<td>0.152**</td>
</tr>
<tr>
<td></td>
<td>(0.085)</td>
<td>(0.107)</td>
<td>(0.063)</td>
</tr>
<tr>
<td>Share of land with sporadic title</td>
<td>0.019</td>
<td>0.111</td>
<td>−0.017</td>
</tr>
<tr>
<td></td>
<td>(0.071)</td>
<td>(0.090)</td>
<td>(0.071)</td>
</tr>
<tr>
<td>Size of rubber area (ha)</td>
<td>−0.030</td>
<td>−0.006</td>
<td>−0.086**</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.028)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>Wealth index (quintiles)</td>
<td>0.011</td>
<td>−0.023</td>
<td>0.031**</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.031)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>Perceived soil quality included</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Soil quality measures included</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Chi²/F-statistic</td>
<td>297.453**</td>
<td>232.371**</td>
<td>312.312**</td>
</tr>
<tr>
<td></td>
<td>(0.071)</td>
<td>(0.029)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>665</td>
<td>174</td>
<td>851</td>
</tr>
<tr>
<td></td>
<td></td>
<td>231</td>
<td>741</td>
</tr>
</tbody>
</table>

Notes: All models have the logarithm of rubber yield (kg/ha) as dependent variable. All models were estimated with random effects panel estimators using data from 2012 and 2015, except for the model in column (6), which only includes 2012 data and was estimated with ordinary least squares. Coefficient estimates are shown with robust standard errors clustered at village level in parentheses. The share of land titled in the plot-level models is 1 if the plot was titled and 0 otherwise. Additional covariates that were included in estimation are shown in Table A2.

* p ≤ 0.10.
** p ≤ 0.05.
*** p ≤ 0.01.
Given smaller family networks in the local context, migrants depend more on formal credit markets to access financial capital (collateralization effect). Second, for migrants, customary land claims do not hold, so that formal property rights play a more important role for tenure security (assurance effect).

In the plot-level models in Table 1, each of the rubber plots is considered separately. Plots with a systematic land title have 16% higher yields than plots without title (column 3). The effect is smaller than in the household-level models. This is plausible, because the same household can have titled and untitled plots, so that spillovers may occur. For instance, a title for one plot will usually suffice as collateral to obtain a credit to pay for farm inputs that can be used to increase productivity on all of the household plots. Also in the plot-level specifications, the effect for migrants (column 4) is larger than the effect for the total sample of farmers.

While we control for plot- and household-level characteristics, including road distance that influences farmers’ access to input and output markets (see Table A2), it is still possible that there are unobserved factors that influence land titling and productivity simultaneously. Such unobserved heterogeneity could lead to bias in the coefficient estimates. For instance, land with better soil quality will result in higher yields and may also have a higher likelihood to be titled. The measures of perceived soil quality are included in the model in column (5) of Table 1. In addition, column (6) shows precise soil quality measurements as explanatory variables for the random sub-sample for which these measurements are available. In both these models, the coefficient for systematic land titles remains positive and significant. As soil quality may also be correlated with other relevant unobserved factors, this suggests that the finding of a positive effect of land titles on crop productivity is rather robust to unobserved heterogeneity.

4.3. Land Titles and Agricultural Intensity

Estimation results with indicators of input intensity as dependent variables, as explained in Eqs. (3) and (4), are summarized in Table 2 (full results are shown in Table A5). Possession of systematic land titles significantly increases the use of material inputs (chemical fertilizers and pesticides). The marginal effect of 114 thousand IDR/ha in column (1) is equivalent to a 35% increase over sample mean expenditures for such inputs. Among migrant farmers, the effect is even larger (column 2). For labor input (column 3), we also find a positive effect of systematic land titles, which is somewhat smaller (13%) than that for material inputs. For migrant farmers, the effect of systematic land titles on labor is insignificant (column 4). On the other hand, sporadic land titles seem to increase labor input among migrants. As mentioned, sporadic titles are of limited value in formal credit markets, but – unlike material inputs – farmers rarely take a credit to pay for hired labor.

We expect that the effect of land titles on agricultural productivity is partly channeled through higher input intensity. Indeed, when including input use in the productivity model (columns 5 and 6 in Table 2), material and labor inputs both have significantly positive effects, whereas the effect of systematic land titles on productivity declines (compare with column 3 in Table 1). However, the land title effect remains positive and significant, suggesting that other transmission channels also play an important role.

Concerning effects of other socioeconomic variables, we find that female-headed households have lower yields than male-headed households. In some of the productivity models, the negative coefficient for female household head is statistically significant (Table A2 in the Online Appendix). Lower yields are probably due to lower labor and fertilizer use in female-headed households, which is evident from the negative coefficients for this variable also in the intensity models (Table A5). In addition, we find that input use is positively associated with household wealth and migration status (Table A5).

4.4. Spatial Patterns of Land Titling

Now we take a spatial perspective and analyze the likelihood of plots being titled as a function of forest closeness (see Eq. (5)). As mentioned, plots located in areas designated as state forest are not eligible for titling, even though the boundaries are not clear-cut. Table 3 shows plot-level probit regression estimates with a dummy for systematic land titles in 2015 as dependent variable and the share of forest in 1990 as explanatory variable (columns 1–3). Controlling for other factors (see full results in Table A6), location at forest margins (areas that were more forested in the past) decreases the likelihood of

<table>
<thead>
<tr>
<th>Plot-level models</th>
<th>Material input (000 IDR/ha)</th>
<th>Material input (000 IDR/ha)</th>
<th>Log of labor input</th>
<th>Log of labor input</th>
<th>Log of yield (kg/ha)</th>
<th>Log of yield (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>Systematic land title (=1)</td>
<td>114.148^*</td>
<td>204.127^**</td>
<td>0.125</td>
<td>0.122</td>
<td>0.141^*</td>
<td>0.145^**</td>
</tr>
<tr>
<td>0.48.649</td>
<td>(97.340)</td>
<td>(0.070)</td>
<td>(0.104)</td>
<td>(0.062)</td>
<td>(0.062)</td>
<td></td>
</tr>
<tr>
<td>Sporadic land title (=1)</td>
<td>−9.365</td>
<td>26.157</td>
<td>0.055</td>
<td>0.198</td>
<td>−0.015</td>
<td>−0.026</td>
</tr>
<tr>
<td>36.395</td>
<td>(61.016)</td>
<td>(0.056)</td>
<td>(0.015)</td>
<td>(0.073)</td>
<td>(0.062)</td>
<td></td>
</tr>
<tr>
<td>Plot size (ha)</td>
<td>−7.491</td>
<td>−14.137</td>
<td>−0.104^***</td>
<td>−0.084^***</td>
<td>−0.053^***</td>
<td></td>
</tr>
<tr>
<td>9.024</td>
<td>(21.056)</td>
<td>(0.021)</td>
<td>(0.038)</td>
<td>(0.017)</td>
<td>(0.014)</td>
<td></td>
</tr>
<tr>
<td>Wealth index (quintiles)</td>
<td>38.959^**</td>
<td>9.467</td>
<td>−0.007</td>
<td>−0.011</td>
<td>0.029</td>
<td>0.027^*</td>
</tr>
<tr>
<td>11.018</td>
<td>(22.878)</td>
<td>(0.023)</td>
<td>(0.042)</td>
<td>(0.015)</td>
<td>(0.014)</td>
<td></td>
</tr>
<tr>
<td>Material input (million IDR/ha)</td>
<td>0.076^**</td>
<td>0.076^**</td>
<td>(0.027)</td>
<td>(0.034)</td>
<td>0.334^**</td>
<td></td>
</tr>
<tr>
<td>Labor input (log of hours/ha)</td>
<td>139.889^***</td>
<td>82.550^***</td>
<td>4202.748^***</td>
<td>482.462^***</td>
<td>357.550^***</td>
<td>1033.791^***</td>
</tr>
<tr>
<td>Chi^2</td>
<td>1101</td>
<td>286</td>
<td>1015</td>
<td>269</td>
<td>850</td>
<td>846</td>
</tr>
</tbody>
</table>

Notes: All models were estimated with random effects panel estimators using data from 2012 and 2015. Coefficient estimates are shown with robust standard errors clustered at village level in parentheses. Due to left-censoring of the dependent variable, a Tobit specification was used in columns (1) and (2). IDR, Indonesian rupiah. Additional covariates that were included in estimation are shown in Table A5.

^* p ≤ 0.10.
^** p ≤ 0.05.
^*** p ≤ 0.01.
systematic land titling by 13–18 percentage points. Column (4) in Table 3 shows a model with a somewhat different specification, confirming that plots that were deforested by households themselves are less likely to be titled.

Concerning the effects of control variables, we find that plots located further away from roads are significantly less likely to be titled. On the other hand, plots that were already used by the farmer for a longer period of time are more likely to be titled. In some of the models, we find a significantly positive effect of household wealth on land titling (Table A6).

Without land titles, farmers at the forest margins are less able and willing to increase productivity, so they may have stronger incentives to increase their farm size by further expanding into forest land. To test this hypothesis, we regress farm size in 2015 on the share of forest in 1990 (see Eq. (6)). The estimation results are shown in columns (5) to (7) of Table 3. As expected, farms at the forest margins are significantly larger than farms further away from the forest. The model in column (8) of Table 3 also confirms that households’ deforestation activities have directly contributed to larger farm sizes.

We emphasize that lack of land titles is not the only factor that could explain larger farms at forest margins. Closeness to the forest is likely correlated with the private costs of deforestation: for farmers close to the forest it may be cheaper to deforest due to lower transportation costs. This means that the provision of land titles may not completely eliminate deforestation, but it would still influence incentive structures towards more intensive forms of production. For farms close to the forest, additional incentives for more intensive forms of production seem to be particularly important to reduce deforestation activities. Spatial dependencies are addressed in our analysis through the use of spatial error models and spatial lag models, as explained above.

While we have no plot- or farm-level data on cropping patterns before 2012, which could help to elucidate historical relationships between intensity, productivity, and farm size expansion, in Table A7 we regress current farm size (in 2015) on current rubber yields. Farm size is negatively associated with yield, even after controlling for other factors, providing further evidence that higher productivity may indeed reduce the incentive to expand the area cultivated.

5. Discussion

Using data from farm households in Jambi Province, Sumatra, we have shown that secure land property rights contribute to higher agricultural intensity and productivity. Higher productivity on the land already cultivated can lower the need to convert additional forest land and thus reduce deforestation. Yet, the effectiveness of this mechanism depends on the spatial patterns of land titling and intensification. While it is particularly important that farmers at the forest margins have secure land property rights, our data have revealed that farmers close to historic forested areas are unlikely to hold formal land titles. Like many other developing countries (Agrawal et al., 2008), Indonesia considers forest land as state property. However, forest governance is constrained by unclear boundaries, limited capacity to monitor, and overlaps of state and customary land claims (Indarto et al., 2012). While land that was deforested in violation of state law is not eligible for titling, farmers are rarely prosecuted and punished for deforestation activities. Without land titles, farmers at the forest margins have little incentive to intensify and rather expand their farms by deforesting additional land. Indeed, farms at the historic forest margins were found to be larger in size.

The results confirm that the provision of land titles can contribute to agricultural intensification and reduced deforestation, even though this potential is not fully realized in this particular setting. Addressing the existing inconsistencies between state and customary land institutions at the forest margins would be important to encourage land-sparing agricultural intensification. This does not mean that farmers encroaching forest land should easily be granted land titles for the newly deforested plots. But a regime that does not effectively impede deforestation and at the same time excludes farmers at the forest margins from the legal property system is probably the worst recipe for forest protection and agricultural development. Besides improving farmer’s access to land titles for non-forest land, better recognition of customary land rights and more effective protection of forest land without recognized claims could be useful policy responses.

The adoption of technical and institutional innovations in agriculture is a process that is driven by various factors, so that mechanisms and outcomes are highly context specific (Knowler and Bradshaw, 2007; Sietz and van Dijk, 2015). Agricultural intensification, productivity change, and deforestation are not only influenced by land titles and related property rights regimes, but also by a number of other socioeconomic variables. For instance, our results show that female-headed and less wealthy households have lower agricultural intensity and productivity, even after controlling for land titles. Poorer households are also less likely to hold land titles, most likely due to the high costs associated with acquiring systematic land titles in the current
regime. Besides the issue of land titling, policymakers need to take the broader socioeconomic context into account and identify solutions that are inclusive of disadvantaged population groups.

Our research coincides with major efforts of the Indonesian government to reform its land governance system. After a court ruling in 2013, the government is now negotiating major releases of land to local communities through social forestry schemes. Moreover, the government aims to legalize and reallocate land ownership to local families through the so-called TORA initiative (Land Object of Agrarian Reform) (LANDac, 2016). Our research delivers timely support for the TORA initiative in particular, because the land covered in our survey is mostly cultivated by individual farming families. However, privately-owned agricultural land with secure land titles and community-owned forest land is not a contradiction. Our results suggest that this combination can contribute to efficient agricultural production on the already cultivated land, while effectively preserving the remaining forest resources.

We acknowledge that the relationships are complex and that we were not able to establish all relevant effects unambiguously. Further research is required to confirm some of the mechanisms. First, our study concentrated on deforestation activities by smallholder farmers. Large logging and agribusiness companies also contribute to deforestation in a significant way, and the incentive structures in the company sector are likely different. Second, we did not show that farm location at the forest margins affects agricultural productivity and intensity directly. The reason is that forest closeness is correlated with many unobserved factors that could also influence yield. Beyond soil characteristics, microclimate and the abundance of various types of organisms may play important roles (Guillaume et al., 2016).

A third aspect that we did not analyze explicitly is that higher agricultural productivity may lead to higher land rents, which could make further forest conversion more attractive for outside agents and thus induce in-migration. However, another recent study with data from Jambi showed that autochthonous farm households are much more involved in deforestation than migrant households (Krishna et al., 2017b). In any case, to avoid that the increasing agricultural productivity threatens forest resources, it will be useful to invest some of the accruing economic benefits into effective forest protection. Fourth, higher use of material inputs and technologies may possibly lead to a substitution of capital for manual labor, with the freed labor becoming available to deforest and cultivate additional land. However, higher fertilizer use tends to increases labor demand. Indeed, our data show that land titles have an increasing effect on labor input on the already cultivated plots. Another material input that is used more widely by farmers with land titles is herbicides, which could be labor-saving in general. Yet, the labor input for manual weeding in this setting is small, so that increasing herbicide use leads to better weed control and higher yields rather than significant reduction in the use of manual labor. We acknowledge that if farm households had substantial labor surplus, it could still be economically rational for them to use the surplus labor for deforestation. However, farming households in Jambi are typically rather labor-constrained, which is also why many of them are currently switching from rubber to oil palm, a crop with significantly lower labor requirements (Euler et al., 2017; Krishna et al., 2017a).

Two seemingly contrasting agricultural options for environmental conservation are widely discussed: extensive farming with higher levels of ecological functions but also higher land demand, and intensive farming with lower levels of ecological functions and lower land demand (Green et al., 2005; Rudel et al., 2009b; Tscharntke et al., 2012). Which of these options is preferable is highly context-specific. Different settings and different valuations of ecosystem functions can produce a wide range of optimal land allocations and degrees of intensity (Steffan-Dewenter et al., 2007). In tropical forest areas, as analyzed here, highly-productive farming with lower land demand and effective forest protection could possibly be the best option to promote sustainable development. The reason is that no agricultural system is able to sustain the same level of biodiversity and ecosystem functions as provided by tropical rainforest (Burney et al., 2010; Clough et al., 2016).

Sumatra had experienced significant deforestation even before land titling started. Hence, from today’s perspective the question whether land titles could have reduced deforestation is partly hypothetical. Still, our findings could help to improve the conservation of the remaining forest land in Sumatra. More importantly, however, our results can provide important insights for other regions as well. Many countries with tropical rainforests face similar complications with smallholder farmers encroaching forest land to expand the agricultural area (Meyfroidt et al., 2013; Godar et al., 2014). In such situations, switching from costly control and sanction mechanisms to more incentive-based policies seems to be promising. This study has made an attempt to contribute in this direction.

Statement

The authors declare no competing financial interests.

Acknowledgments

This study was financed by the Deutsche Forschungsgemeinschaft (DFG) in the framework of the collaborative German-Indonesian EFForTS research project (CRC 990). We thank Bernard Brümmer, Anne Mareike Holtkamp, Dian Melati, Hermanto Siregar, and I Nengah Surati Jaya for their constructive comments on previous versions of this manuscript and for sharing data. We thank village leaders and local plot owners for granting us access to their properties.

Authors contribution

C.K. conducted the regression analyses and coordinated the writing of the paper. K.U. conducted the spatial analysis. C.K., K.U., V.V.K., and M.Q. designed the study, and assembled the data sets. C.K., K.U., V.V.K., M.Q., and Z.A. participated in discussions about data analysis and interpretation and contributed to writing of the paper.

Data availability

The data used in this study are archived with openly accessible, keyword-searchable metadata and data holder contact details for data requests (EFForTS-Information System: University of Goettingen, 2017). Datasets used in this study have the following identification numbers: 12620, 13500, 13501, 13520, 13660, 13642, 13643, 13644, 13647, 13648, 13649, 13650, 13651 (household-level data); 13521, 13600, 13601, 13620 (plot-level data); 11422, 11423, 13680 (village-level data); 11987 (soil data); 12026, 12027, 12030 (land cover maps).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ecolecon.2018.01.021.

References

