BAB I

PENDAHULUAN

1.1. Latar Belakang

Indonesia sebagai negara berkembang terus melakukan pengembangan dalam berbagai bidang, termasuk di sektor industri. Salah satunya adalah dengan cara memenuhi kebutuhan bahan-bahan industri melalui pendirian pabrik-pabrik kimia. Jumlah dan kebutuhan bahan industri yang belum dapat dipenuhi sendiri cukup banyak dan biasanya diperoleh dengan cara impor dari negara-negara produsen yang sudah maju. Seperti halnya dengan butil asetat yang akhir-akhir ini kebutuhannya semakin meningkat dengan kenaikan mencapai 5,8 (Badan Pusat Statistik, 2011).

Pada saat ini kebutuhan butil asetat cukup tinggi di Indonesia yang menyebabkan Indonesia mengimpor butil asetat dari luar negri. Untuk memenuhi kebutuhan dalam negri Indonesia masih mengimpor butil asetat dari Amerika, Eropa, dan China. Data impor menunjukkan jumlah penggunaan butil asetat di Indonesia cukup tinggi. Adanya pembangunan pabrik butil asetat di Indonesia diharapkan dapat mengurangi dan memenuhi kebutuhan butil asetat di Indonesia, sehingga terciptanya kesempatan membuka lapangan pekerjaan baru, dengan di bangunnya pabrik ini di Indonesia diharapkan dapat mendorong pembangunan pabrik lainnya yang menggunakan bahan baku dan produk butil asetat sebagai bahan baku utama dalam proses dalam suatu proses industri.

Butil asetat diaplikasikan pada dunia industri sebagai solven aktif yang digunakan untuk film former seperti pada selulosa nitrat, etil selulosa, resin

methacrylate dan ada juga digunakan pada getah alam seperti kauri dan damar. Disamping itu butil asetat juga diaplikasikan sebagai protective coating yang biasanya berguna sebagai pelarut pada beberapa industri seperti pada kerajinan kulit, industri tekstil dan juga pada plastik, serta biasanya juga digunakan untuk solvent ekstraksi pada berbagai proses beberapa jenis minyak dan jugauntuk obatobatan. Selain itu juga, butil asetat juga bisa digunakan dalam pembuatan parfum dan sebagai komponen pada beberapa aroma sintetis yang misalnya adalah aroma pir, aprikot, raspberry dan delima.

Melalui data impor butil asetat mengalami peningkatan, sedangkan di dalam negeri belum ada pabrik yang memproduksi butil asetat untuk memenuhi kebutuhan di indonesia. Kapasitas pabrik butil asetat yang akan didirikan 58.000 ton/tahun. Sebagian besar kebutuhan butil asetat ditutupi dengan mengimpor dari negara lain, maupun bagi masyarakat yang dapat dijadikan tenaga kerja pada saat pabrik ini didirikan dan beroperasi.

Oleh karena produk ini memiliki peranan yang besar dalam kehidupan industri,maka pendirian pabrik butil asetat sangat tepat mengingat di Indonesia produksi butilasetat masih belum memenuhi kebutuhan konsumsi dalam negeri dan untuk mengurangi import dari negara lain.

1.2. Sejarah dan Perkembangan

Butil asetat merupakan senyawa yang diperoleh dari proses dehidrogenasi etanol dan esterifikasi asam asetat dan butanol, melalui proses batch maupun kontinyu. Butil asetat merupakan pelarut dengan titik didih menengah (medium boiling pelarut), yangsecara cepat melarutkan resin-resin dan memberikan ketahanan pada lapisan pelindung. Dengan kecepatan relatif penguapan 1,0

pelarut butil asetat menguap cukup cepat sehingga menghasilkan lapisan pelindung yang cepat mengering,tetapi tidak sampai mengakibatkan perubahan warna (kemerahan) pada kondisinormal. Butil asetat merupakan pelarut yang aktif untuk pelapisan seperti selulosanitrat, selulosa asetat butirat, etil selulosa, chlorinated rubber, polistirena, dan resin metakrilat.

Sampai saat ini, di Indonesia hanya memiliki satu pabrik yang memproduksi butil asetat, sedangkan kebutuhan butil asetat di Indonesia diperkirakan akan terus meningkat sesuai dengan banyaknya industri yang menggunakannya, oleh karena itu pendirian pabrik perlu dilakukan. Banyaknya tenaga kerja Indonesia yang membutuhkan pekerjaan, dengan didirikannya pabrik ini diharapkan dapat menyerap tenaga kerja hingga mengurangi pengangguran.

1.3. Proses Pembuatan

1.3.1 Tahap Persiapan Bahan Baku

Bahan baku etanol 99% dan katalis aluminium oksida dari tangki penyimpanan pada suhu 30°C dinaikan suhunya menggunakan heater hingga mencapai 70°C sebagai persiapan sebelum masuk reaktor untuk proses pembentukan butil asetat.

1.3.2 Tahap Pembentukan Produk

Reaksi antara etanol dan butil asetat dengan perbandingan mol 1,1 : 1 untuk membentuk butil asetat terjadi pada fasa cair-cair dengan *continious stirred* tank reactor dengan bantuan katalis Al₂O₃. Reaksi berlangsung pada suhu 70C dengan tekanan 1 atm selama 4 menit dengan konversi 99%. Reaksi yang berlangsung bersifat eksotermis, dengan reaksi yang terjadi:

4

$$3C_2H_5OH_{(l)}$$
 \longrightarrow $C_6H_{12}O_{2(l)} + H_2O_{(aq)} + 2H_{2(g)}$

Produk keluaran reaktor diturunkan suhunya menjadi 70°C lalu dialirkan menuju belt filter untuk memisahkan katalis.

1.3.3 Tahap Pemurnian Produk

Butil Asetat dipisahkan dengan air, dan etanol yang tidak bereaksi dengan dialirkan melalui pompa (P-03) ke dalam Kolom distilasi (KD-01) yang sebelumnya telah dipanaskan terlebih dahulu ke dalam heater menjadi 115°C. Air dan etanol yang tidak bereaksi terpisah ke bagian top kolom destilasi dan masuk ke Total Condensor (TC-01) dengan kondisi operasi 112°C Tekanan 1,5 Atm , sebagian dikembalikan menggunakan Accumulator (ACC-01) dan sisanya dialirkan menuju Utilitas.

Produk Butil Asetat yang telah dipisahkan lalu dialirkan ke bottom kolom destilasi dan dimasukkan ke dalam Reboiler (Rb-01) dengan kondisi operasi 531°C Tekanan 0,5 Atm, lalu didinginkan menggunakan Chiller (Ch-01) sebelum dimasukkan ke dalam tangki produk (T-03).

1.4. Sifat Fisika dan Kimia Bahan Baku, Produk, dan Katalis

1.4.1. Bahan Baku

1. Etanol

a. Sifat Fisik

Rumus molekul : C_2H_5OH

Fasa : Cair

Berat molekul : 46,069 gr/grmol

Titik leleh : -112 °C

Titik didih : 78,4 °C

Tekanan kritis : 243,1 °C

Densitas pada 25 °C : 0,78506 g/ml

(Perry, 2008)

- b. Sifat Kimia
- Etanol dapat dibuat dari fermentasi glukosa

 $C_6H_{12}O_6 \xrightarrow{enzim} C_2H_5OH + CO_2$

- Sangat larut dalam air, eter

1.4.2. Produk

1. Butil Asetat

a. Sifat Fisik

Rumus Molekul : CH₃COOC₄H₉

Fasa : Cair

Warna : Bening

Berat Molekul : 116,16, g/mol

Titik Nyala : 34,4°C

Titik Didih : 126°C

Suhu Kritis : 305,9°C

Tekanan Kritis : 31 atm

Densitas $(20 \, {}^{\circ}\text{C})$: 0,88 g/mL

(Perry, 2008)

b. Sifat Kimia

- Esterifikasi

Asam asetatdireaksikan dengan butanol membentuk butil asetat.

 $CH_3COOH + C_4H_9OH \longrightarrow CH_3COOC_4H_9 + H_2O$

- Reaksi asam asetat dengan diazomethane

 $CH_3COOH + CH_2N_2 \longrightarrow CH_3COOCH_3 + N_2$

1.4.3. Katalis

1. Aluminium oksida

a. Aluminium oksida

Rumus Molekul : Al₂O₃

Bentuk : Amorf

Berat Molekul : 102 g/mol

Surface area : $85 - 115 \text{ m}^2/\text{g}$

Kemurnian : 99,6 %

Titik Lebur : 2030°C

Titik Didih : 2,980°C

Spesific gravity : 3,99

Tekanan Kritis : 31 atm

Densitas : 3,95 g/cm

(Perry, 2008)

b. Sifat kimia

Ikatan pada aluminium oksida tidak murni ionic sebab ada pengutuban pada ion oksida. Alumina bersifat khas amfoter, larut dalam asam menghasilkan garam aluminium dan dalam basa menghasilkan aluminat.

1.4.4. Produk samping

1. Hidrogen

a. Sifat Fisik

Rumus Molekul : H₂

Berat Molekul : 2,016 g/mol

Titik Didih : -253°C

Densitas : 0.085 kg/cm^3

(Perry, 2008)

b. Sifat Kimia

Bereaksi dengan oksigen menghasilkan $H_2O: 2H_2 + O_2 \longrightarrow 2H_2O$

- Sangat mudah terbakar dan meledak pada suhu temperatur 560 °C
- Akan terbakar pada konsentrasi serendah 4% H2 di udara bebas.

2. Air

a. Sifat Fisik

Rumus Molekul : H₂O

Fasa : Cair

Berat Molekul : 18,02 g/mol

Warna : Tidak berwarna

Titik Beku : 0°C

Titik Didih : 100°C

Densitas : $0,9941 \text{ g/cm}^3$

Kelarutan dalam air : Tercampur sepenuhnya

(Perry, 2008)

b. Sifat Kimia

Bersifat netral (pH = 7) dalam keadaan murni, bersifat polar karena adanya perbedaan muatan dan sebagai pelarut yang baik karena kepolarannya.