BAB III

METODE PENELITIAN

3.1 Waktu dan Tempat penelitian

Tempat penelitian ini akan dilaksanakan dikelas XI MIPA I dan XI MIPA 2 SMA Negeri 2 Muaro Jambi yang berlokasi di Jl. Pertamina, No. 27, Rt. 13, Kel. Sengeti, Kec.Sakernan, Kab. Muaro Jambi. Waktu penelitian ini akan dilaksanakan pada semester genap tahun ajaran 2022/2023. Jadwal penelitian disesuaikan dengan materi koloid.

3.2 Rancangan Penelitian

Penelitian ini menggunakan metode eksperimen semu (*quasy experiment*).

Desain penelitian yang diguanakan yaitu *posttest only control group design*.

Terdapat dua sampel yang digunakan yaitu kelas eksperimen dan kelas kontrol.

Pada kedua kelas sampel akan diajarkan dengan model pembelajaran yang berbeda dan menggunakan media belajar yang sama berupa LKPD.

Dalam penelitian ini kedua kelas sampel akan diberikan perlakuan yang berbeda, yaitu kelas eksperimen diajarkan menggunakan model pembelajaran *Project Based Learning* berbasis STEM dengan media belajar LKPD, sedangkan kelas kontrol diajarkan menggunakan model *Direct Instruction* dengan media belajar LKPD. Selama proses pembelajaran berlangsung akan dilakukan observasi oleh observer untuk mengamati keterampilan proses sains siswa pada kedua kelas sampel. Selain itu, pada kelas eksperimen juga dilakukan observasi oleh observer untuk mngetahui keterlaksanaan model pembelajaran *Project Based Learning* berbasis STEM sebagai data pendukung menggunakan lembar observer penerapan

model Project Based Learning berbasis STEM oleh guru dan lembar observasi aktivitas siswa. Selanjutnya, masing-masing kelas sampel dilakukan *posttest* untuk mengukur dan mengetahui keterampilan proses sains siswa setelah diberikan perlakuan, sehingga dapat diketahui perbedaan pada kedua kelas untuk mengetahui pengaruh model pembelajaran *Project Based Learning* berbasis STEM terhadap Keterampilan Proses Sains Siswa.

Data utama dalam penelitian ini berupa data kuantitatif yang diperoleh dari tes esai (posttest) pada kedua kelas sampel. Data posttest tersebut akan diujikan dengan uji t pihak kanan untuk mengetahui perbedaan keterampilan proses sains siswa pada kedua kelas sampel sehingga dapat diketahui pengaruh perlakuan model pembelajaran Project Based Learning berbasis STEM terhadap keterampilan proses sains siswa. Sedangkan data pendukung berupa data kualitatif yang diperoleh dari lembar observasi penerapan model oleh guru dan aktivitas siswa untuk mengetahui keterlaksanaan model pembelajaran Project Based Learning berbasis STEM.

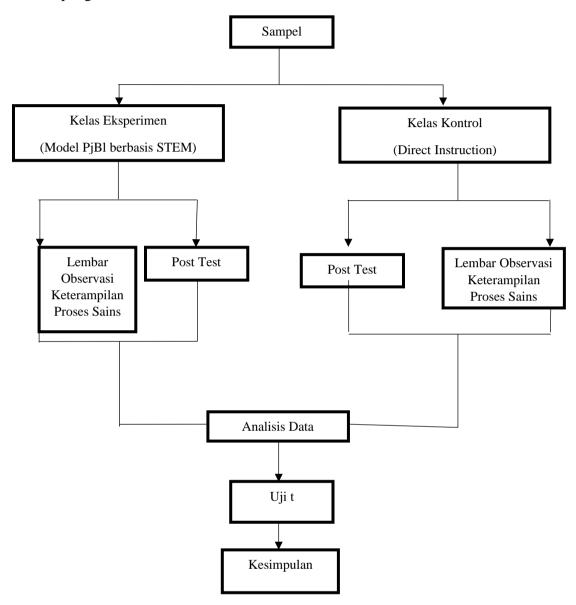
Adapun desain penelitian ini digambarkan pada tabel dibawah ini:

Tabel 3.1 Desain Penelitian

Kelompok	Pretest	Perlakuan	Post test
Ekperimen (PjBL STEM)	01	X1	O2
Kontrol	O3	X2	O4

Keterangan:

X1 : Perlakuan menggunakan model pembelajaran PjBL Berbasis STEM


X2 : Perlakuan dengan menggunakan model konvensional

O1 : Pengukuran awal pada kelas eksperimen

O2 : pengukuran awal pada kelas kontrol

O3: pengukuran akhir dikelas eksperimen

O4: pengukuran akhir kelas kontrol

Gambar 3.1 Rancangan Penelitian

3.3. Subjek penelitian

Subjek dalam penelitian ini diambil dari populasi siswa kelas XI MIPA SMA N 2 Muaro Jambi. Populasi adalah kelompok besar individu yang mempunyai karakteristik yang sama (Hasnunidah, 2017). Populasi dalam penelitian ini adalah

seluruh siswa kelas XI MIPA SMA N 2 Muaro Jambi. Pada Tabel 3.2 ditampilkan jumlah siswa kelas XI yang menjadi populasi dalam penelitian ini.

Tabel 3.2 Jumlah siswa kelas XI MIPA SMA Negeri 2 Muaro Jambi

Tabel	Jumlah
XI MIPA 1	30
XI MIPA 2	31
XI MIPA 3	32
XI MIPA 4	30

(Sumber: TU SMA N 2 Muaro Jambi)

Sampel yaitu sebagian dari populasi yang dijadikan subjek penelitian. Sampel dalam penelitian ini diambil dengan menggunakan teknik *Purposive Sampling* karena pembagian siswa pada setiap kelas berdasarkan peringkat. Oleh karena itu, sampel yang dipilih dalam penelitian ini adalah sampel yang memiliki kemampuan yang sama, artinya tidak terlalu tinggi dan juga tidak terlalu rendah keterampilan proses sainsnya. Dengan demikian, sampel yang digunakan terdiri dari dua kelas, yaitu kelas XI MIPA 1 sebagai kelas eksperimen dan kelas XI MIPA 2 sebagai kelas kontrol

3.4 Variabel Penelitian

Variabel adalah objek pengamatan, fenomena atau gejala yang diteliti. Identifikasi variabel harus didasarkan pada permasalahan dan landasan teoritis (Husnunidah, 2017). Berdasarkan permasalahan yang telah dirumuskan serta teori yang melandasinya.

- a. Variabel bebas (X) : Model pembelajaran Project Based Learning berbasis STEM.
- b. Variabel terikat (Y): Keterampilan proses sains.

3.5 Teknik Pengumpulan Data

Data dalam penelitian ini berupa data kuantitatif yang terdiri dari lembar observasi keterampilan proses sains siswa dan tes esai pada kedua kelas sampel. Pengumpulan data menggunakan tes esai dilakukan saaat sesudah pembelajaran (posttest). Tujuannya untuk mengetahui perbedaan keterampilan proses sains siswa pada kedua kelas sampel, sehingga dapat disimpulkan pengaruh penerapan model pembelajaran Project Based Learning berbasis STEM dalam pembelajaran terhadap keterampilan proses sains siswa. Adapun lembar observasi penerapan model oleh guru dan aktivitas siswa sebagai data pendukung untuk meninjau proses penerapan model pembelajaran Project Based Learning berbasis STEM sudah sesuai dengan sintaks model tersebut. Pengumpulan data menggunakan lembar observasi penerapan model oleh guru dan aktivitas siswa dilakukan pada setiap pertemuan pembelajaran yang diamati oleh observer guru dan observer siswa.

3.6 Instrumen Penelitian

Sugiyono (2007) menyatakan bahwa instrumen penelitian adalah suatu alat yang digunakan untuk mengukur fenomena alam maupun sosial yang diamati. Secara spesifik semua fenomena ini disebut variabel penelitian. Pada penelitian ini instrumen yang digunakan adalah lembar wawancara, pedoman observasi penerapan *Project Based Learning* berbasis STEM, pedoman observasi keterampilan proses sains, serta soal tes esai untuk mengamati pengetahuan siswa.

Tabel 3.2 Sumber data, Teknik Pengumpulan Data, Instrumen dan Validasi

Kegiatan	Sumber data	Teknik pengumpulan data	Instrumen	Keterangan
Survey awal	Guru	Melakukan	Pedoman	Diskusi dengan
penelitian		wawancara	wawancara	Pembimbing

Penerapan	Guru	Melakukan	Pedoman	Validasi isi
model PjBL		observasi	observasi	
berbasis STEM	Siswa	Melakukan	Pedoman	Validasi isi
		observasi	observasi	
Keterampilan	Siswa	Melakukan	Pedoman	Valiadasi isi
Proses Sains		observasi	observasi	
	Siswa	Melakukan tes	Soal Tes esai	Validasi isi
		esai		

3.6.1 Lembar Wawancara

Survey awal melalui wawancara mendalam dengan guru yang mengajar dikelas XI MIPA SMAN 2 Muaro Jambi. Penelitian ini menggunakan instrumen lembar wawancara dengan indikator berdasarkan kebutuhan data penelitian yang ditampilkan pada tabel 3.4

Tabel 3.3 Kisi-kisi lembar observasi wawancara guru

No	Indikator
1	Kriteria ketuntasan minimum materi kimia
2	Sarana dan prasarana
3	Model pembelajaran yang biasa digunakan
4	Model pembelajaran yang digunakan dalam materi sistem koloid
5	Kesulitan guru saat pembelajaran sistem koloid
6	Kriteria ketuntasan siswa pada materi sistem koloid
7	Rata – rata ketuntasan siswa pada materi sistem koloid
8	Karakteristik model pembelajaran untuk sistem koloid
9	Tingkat pemahaman siswa
10	Cara meningkatkan kemampuan tingkat kognitif
11	Keterampilan proses sains

3.6.2 Lembar Observasi penerapan model pembelajaran *Project Based Learning*Berbasis STEM oleh guru

Instrumen lembar observasi pelaksanaan model oleh guru digunakan hanya sebagai instrumen tambahan agar guru/peneliti benar-benar melaksanakan model pembelajaran yang sesuai dengan sintaks nya. Penggunaan instrumen ini bertujuan sebagai data kualitatif yang dipakai untuk menjelaskan secara deskriptif permasalahan dan kesalahan yang mungkin terjadi dilakukan oleh guru/peneliti dalam melaksanakan proses mengajar. Model pembelajaran *Project Based*

Learning berbasis STEM memiliki 5 sintaks. Kisi-kisi lembar observasi penerapan model PjBL berbasis STEM oleh guru ditampilkan pada tabel.

Tabel 3.4 Kisi-kisi lembar observasi penerapan model PjBL berbasis STEM

	Tabel 3.4 Kisi-kisi lembar observasi penerapan model PjBL berbasis STEM					
No	Sintak	Aspek kegiatan guru	Butir			
1	Reflection	Guru memberikan motivasi agar siswa memiliki kemauan untuk menyelidiki keempat bidang STEM dalam ruang lingkup materi sistem koloid	1			
		Guru membimbing siswa untuk mengajukan pertanyaan	2			
2	Research	Guru mengarahkan siswa mencari informasi/sumber yang relevan dengan materi	3			
		Guru membimbing siswa untuk merumuskan jawaban permasalahan	4			
3	Discovery	Guru mengarahkan siswa untuk mengevaluasi ide/gagasan secara merinci	5			
		Guru membimbing siswa dalam menentukan dan merancang proyek perkelompok	6			
4	Application	Guru memantau siswa melakukan percobaan sistem koloid menggunakan alat uji yang telah dibuat	7			
		Guru mengarahkan setiap kelompok untuk mendiskusikan hasil percobaan	8			
		Guru menilai kemampuan siswa mengolah data dan merumuskan kesimpulan	9			
5	Communication	Guru mengarahkan setiap kelompok untuk menyampaikan hasil analisis dan kesimpulan diskusi	10			
		Guru memotivasi kelompok yang lain untuk menanggapi serta menilai kemampuan siswa berkomunikasi lisan	11			
		Guru menilai keterampilan proses sains serta kemampuan berkomunikasi siswa	12			

3.6.2 Lembar Observasi Aktivitas Siswa

Instrumen lembar aktivitas siswa digunakan hanya sebagai instrumen tambahan agar siswa benar-benar melaksanakan aktivitas yang sesuai dengan sintak model pembelajaran.

Tabel 3.5 Kisi-kisi lembar observasi aktivitas siswa

No	Sintak	Aspek yang diamati	Butir
1	Reflection	 Siswa mempelajari Sifat-Sifat Koloid dengan 	1
		mengamati contoh	
		Siswa mengajukan pertanyaan terkait materi	2

No	Sintak	Aspek yang diamati	Butir
2	Research	Siswa mencari informasi/ sumber-sumber yang	3
		relevan dengan materi	
		Siswa merumuskan jawaban permasalahan	4
3	Discovery	 Siswa mengevaluasi Kembali ide/ gagasan secara 	5
		merinci	
		Siswa merancang proyek	6
4	Application	 Siswa melakukan percobaan sistem koloid 	7
		menggunakan alat uji yang telah dibuat (proyek)	
		Masing-masing kelompok mendiskusikan hasil	8
		percobaan kemudian menyimpulkan hasil diskusi	
		Siswa mengolah data dan merumuskan kesimpulan	9
5	Communication	Perwakilan setiap kelompok menyampaikan hasil	10
		analisis dan kesimpulan diskusi	
		Kelompok lain menanggapinya	11
		Menyampaikan kesimpulan pembelajaran	12

3.6.3. Lembar Observasi Keterampilan Proses Sains Siswa

Instrumen lembar observasi keterampilan proses sains yang digunakan dalam penelitian ini merupakan lembar observasi yang telah dikembangkan berdasarkan jurnal Hayati (2017) dengan aspek yang diukur dalam lembar observasi ini terdiri dari tujuh aspek. Menurut aspek-aspek keterampilan proses sains yang sering digunakan dalam proses pembelajaran adalah sebagai berikut : mengamati, merumuskan hipotesis, merencanakan percobaan, melakukan percobaan, menginterpretasikan atau menafsirkan data, menerapkan konsep dan berkomunikasi. Adapun kisi-kisi indikator keterampilan proses sains siswa dapat dilihat pada tabel 3.6

Tabel 3.6 Kisi-kisi lembar observasi keterampilan proses sains oleh siswa

No	Keterampilan proses	Indikator	No
	sains		item
1	Mengamati	Mengamati perubahan yang terjadi pada setiap percobaan	1
2	Menafsirkan Pengamatan	Menghubungkan hasil pengamatan dengan teori	2
3	Meramalkan	Menuliskan berbagai kemungkinan yang terjadi hasil pengamatan	
		Memprediksi jawaban dari pertanyaan-pertanyaan yang ada pada LKPD dengan menggunakan teori/sumber yang relevan	
4	Merencanakan Percobaan	Menentukan Langkah kerja yang ada pada LKPD yang diberikan oleh guru	4

No	Keterampilan proses Indikator		No
	sains		item
		Menggunakan konsep pada pengalaman baru untuk	5
		menjelaskan apa yang sedang terjadi	
		Menyusun Hipotesis	6
5	Menerapkan konsep	Menerapkan konsep materi pembelajaran pada hasil	7
		percobaan	
6	Menggunakan Alat dan	Menggunakan alat dan bahan sesuai dengan prosedur	8
	Bahan	yang ada diLKPD	
7	Berkomunikasi	Mempresentasikan hasil pengamatan secara sistematis	9
		dan jelas	
		Memberikan kesimpulan berdasarkan fakta atau prinsip	10
		dalam hasil percobaan	
8	Mengajukan pertanyaan	Bertanya apa, bagaimana dan mengapa	11
		Mengajukan pertanyaan yang melatar belakangi	12
		hipotesis	

3.6.4 Tes Esai

Tes esai adalah pertanyaan yang menuntut siswa untuk menjawab dalam bentuk menguraikan ,menjelaskan, mendiskusikan, membandingkan, memberikan alasan, dan bentuk lain yang sejenisnya sesuai dengan tuntutan pertanyaan dengan menggunakan kata-kata dalam Bahasa sendiri. Tes esai yang digunakan peneliti yaitu tes esai yang menuntut siswa menjawab sesuai dengan pemahaman siswa menggunakan Bahasa sendiri. Berikut kisi-kisi tes esai

Tabel 3.7 Kisi-kisi Tes Esai

Kompetensi dasar	Indicator	Level	Indicator soal	Nomor
	pencapaian			soal
Dapat membedakan	Pengelompokan	C4	Soal memberikan kesempatan	1,2
koloid, larutan dan	koloid, supensi		kepada siswa untuk dapat	
suspense	dan larutan		melakukan pengamatan perbedaan	
			antara larutan, koloid dan suspense	
			dengan salah satu sifat koloid	
Mengelompokan	Pengelompokan	C4	Soal memberikan kesempatan	3,4
sifat-sifat koloid	sifat koloid dalam		kepada siswa dapat menafsirkan	
dalam kehidupan	kehidupan sehari		pengamatan mengenai salah satu	
sehari hari	hari		sifat koloid dan penerapannya	
			dalam bidang industri	
		C4	Menganalisis jenis koloid	5,6
			berdasarkan peristiwa kehidupan	
			sehari-hari	
		C4	Menganalisis proses koagulasi	7,8
			dalam kehidupan sehari hari	
		C4	Menganalisis salah satu contoh	9,10
			koloid dalam kehidupan sehari-hari	

3.7 Teknik Analisis Data

Adapun teknik analisis data yang digunakan pada penelitian ini adalah sebagai berikut

3.7.1 Analisis lembar observasi penerapan model pembelajaran *Project Based Learning* Berbasis STEM oleh guru

Data pada instrumen lembar observasi penerapan model pembelajaran *Project Based Learning* Berbasis STEM oleh guru digunakan sebagai data pendukung dalam bentuk data kualitatif. Instrumen ini berisi 12 pertanyaan disertai kolom komentar berupa terlaksana atau tidak terlaksananya proses pembelajaran sesuai sintaks model pembelajaran *Project Based Learning* Berbasis STEM yang akan diisi oleh observer, selanjutnya dianalisis serta ditarik kesimpulan terhadap terlaksana atau tidak terlaksananya penerapan model pembelajaran *Project Based Learning* Berbasis STEM oleh guru. Analisis data pada instrumen ini digunakan sebagai data pendukung mengenai keterlaksanaan model pembelajaran *Project Based Learning* Berbasis STEM, untuk memastikan guru sudah melakukan proses pembelajaran sesuai dengan sintaks model pembelajaran *Project Based Learning* Berbasis STEM, serta menguraikan kesalahan atau kendala yang mungkin saja dapat terjadi selama proses penelitian berlangsung

3.7.2 Analisis lembar observasi aktivitas siswa

Analisis dilakukan dengan menghitung perolehan skor pada lembar observasi aktivitas siswa yang telah diamati oleh ebserver. Analisis ini dilakukan terhadap 12 pertanyaan yang tersedia. Analisis data pada instrumen ini digunakan sebagai data pendukung mengenai keterlaksanaan model pembelajaran *Project Based Learning* Berbasis STEM dan mengetahui aktivitas siswa selama proses pembelajaran yang

berlansung sudah sesuai dengan sintaks model pembelajaran *Project Based Learning* Berbasis STEM. Adapun interprestasi skor penilaian instrumen ini sebagai berikut:

Skor minimum $= 1 \times 12 = 12$

Skor maksimum $= 4 \times 12 = 48$

Kelas interval = 4

Jarak kelas interval
$$=\frac{\text{skor maksimum-skor minimum}}{\text{jumlah kelas instrumen}} \frac{48-12}{4} = 9$$

Untuk mencari skor aktivitas siswa pada penerapan model *project based learning* menggunakan rumus :

$$Persentase = \frac{\Sigma \, skor \, hasil \, observasi}{skor \, maksimal} \, x \, 100 \, \%$$

Adapun kategori penelitian lembar observasi dapat dilihat pada tabel 3.10

Tabel 3.8 Kategori penilaian lembar observasi aktivitas siswa

Skor Nilai	Skor	Nilai keterlaksanaan model %	kategori
4	>55,25	> 81,25	Sangat baik
2	>42,5 \le 55,25	> 62,5 ≤81,25	Baik
3	>29,75 \le 42,5	> 43,75 ≤ 62,5	Cukup baik
1	≤ 29,75	> 43,75	Kurang baik

(modifikasi Sugiyono,2013).

3.7.3 Analisis lembar observasi keterampilan proses sains siswa

Analis dilakukan dengan menghitung hasil skor masing-masing lembar observasi yang berisi 12 pertanyaan. Data tersebut dianalisa dengan menjumlahkan skor dari masing-masing item pertanyaan yang telah diamati oleh observer. Interprestasi skor penilaian instrumen ini sebagai berikut:

Skor minimum $= 1 \times 12 = 12$

Skor maksimum $=4 \times 12 =48$

Kelas interval = 4

Jarak kelas interval
$$= \frac{\text{skor maksimum-skor minimum}}{\text{jumlah kelas instrumen}} \frac{48-12}{4} = 9$$

Untuk mencari skor aktivitas siswa pada penerapan model *Project Based Learning* menggunakan rumus :

Untuk mencari skor keterampilan proses sains siswa menggunakan rumus :

Persentase =
$$\frac{\Sigma \text{ skor hasil observasi}}{\text{skor maksimal}} \times 100 \%$$

Adapun kategori penelitian lembar observasi dapat dilihat pada tabel 3.10

Tabel 3.9 Kategori penilaian lembar observasi aktivitas siswa

Skor Nilai	Skor	Nilai keterlaksanaan model %	kategori
4	>55,25	> 81,25	Sangat baik
2	>42,5 ≤55,25	> 62,5 ≤81,25	Baik
3	>29,75 \le 42,5	> 43,75 ≤ 62,5	Cukup baik
1	≤ 29,75	> 43,75	Kurang baik

(modifikasi Sugiyono,2013).

3.7.4 Analisis Tes Esai

Analisis data esai dilakukan untuk mengetahui dan mengukur keterampilan proses sains siswa. Selain itu, untuk mengetahui dan menimpulkan pengaruh penerapan model pembelajaran *Project Based Learning* Berbasis STEM terhadap keterampilan proses sains siswa. Tes esai yang digunakan berupa *posttest*. adapun penilaian terhadap skor yang diperoleh pada tes esai dihitung menggunakan rumus sebagai berikut:

$$Nilai = \frac{\Sigma \text{ skor soal benar}}{\Sigma \text{skor soal}} \times 100 \%$$

3.8 Uji Hipotesis

Pengujian hipotesis dalam penelitian ini dilakukan secara parametrik dengan uji-t. tujuan dari uji-t ini untuk mengetahui adanya perbedaan keterampilan proses

sains siswa pada kelas eksperimen dan kelas kontrol ditinjau dari data posttest siswa, sehingga dapat diketahui pengaruh model pembelajaran Project Based Learning Berbasis STEM terhadap keterampilan proses sains siswa. Adapun syarat uji-t data yang diperoleh harus bersifat normal dan homogen (Sudjana, 2005). Oleh sebab itu, sebelum dilakukan uji-t terlebih dahulu diuji normalitas dan homogenitas data.

3.8.1 Uji Normalitas

Uji normalitas biasanya digunakan untuk mengukur data berskala ordinal,interval, ataupun rasio. Jika analisis menggunakan metode parametrik, maka persyaratan normalitas harus terpenuhi yaitu data berasal dari distribusi yang normal atau jumlah sampel sedikit dan jenis data adalah nominal atau ordinal yang digunakan adalah statistika non parametrik.

Uji normalitas yang telah digunakan adalah uji liliefor dalam buku (Sudjana, 2014) dengan Langkah-langkah sebagai berikut :

- a. Skor hasil tes esai disusun dari data yang terkecil sampai terbesar
- Menghitung rata-rata masing-masing kelompok sampel b.
- Menghitung standar deviasi masing-masing kelompok sampel c.
- d. Mencari skor baku dari skor mentah dengan rumus $Zi = \frac{xi-x}{s}$
- e. Dengan menggunakan daftar distribusi normal baku, dihitung peluang dengan rumus FZi = P(Z < Zi)
- f. lebih kecil dinyatakan dengan:

$$S(Zi) = \frac{Banyak Z1, Z2, Z3....Zn}{n}$$

$$S(Zi) = \frac{FZi}{n}$$

- g. Hitung selisih F(Zi) S(Zi) kemudian ditentukan harga mutlaknya
- h. Ambil yang terbesar dari harga mutlak tersebut, harga terbesar ini disebut L_0
- i. Membandingkan L_0 dengan L_{tabel} dengan tingkat kepercayaan 95% kriteria pengujian adalah :

Jika $L_0 < L_{tabel}$ maka data berdistribusi normal

Jika $L_0 > L_{tabel}$ maka data tidak berdistribusi normal

3.8.2 Uji Homogenitas

Uji ini bertujuan untuk mengetahui apakah objek yang diteliti mempunyai varian yang sama. Uji yang digunakan adalah uji fisher dalam buku (Sudjana,2014) dengan Langkah-langkah sebagai berikut:

- a. Bagi data menjadi kelompok dua kelompok
- b. Menentukan simpangan baku dari masing masing kelompok
- c. Menentukan F_{Hitung}

$$F_{\frac{S1^2}{S2^2}}$$

Keterangan:

 S_1^2 = Varians terbesar

 S_2^2 = Varians terkecil

- d. Jika F_{Hitung} sudah diketahui, maka harga tersebut selanjutnya dibandingkan harga F_{tabel} yang terdapat dalam daftar distribusi F pada tingkat kepercayaan 95% atau $\alpha = 0.05$. Krieteria pengujiannya, yaitu :
- 1) jika $F_{Hitung} \geq F_{tabel}$ berarti kelas tersebut mempunyai varians yang tidak homogen
- 2) jika $F_{Hitung} \le F_{tabel}$ berarti kelas tersebut mempunyai varians yang homogen

3.8.3 Uji-t

Hipotesis penelitian ini adalah : terdapat pengaruh model pembelajaran *Project Based Learning* berbasis STEM terhadap keterampilan proses sains pada materi sistem koloid kelas XI MIPA di SMA N 2 Muaro Jambi. Berdasarkan hipotesis yang dikemukakan maka dilakukan uji t satu pihak yaitu pihak kanan. Berikut ini hipotesis statistik penelitian ini :

$$H_0: \mu_1 \leq \mu_2$$
 $H_a: \mu_1 \geq \mu_2$

Keterangan:

μ₁ : Rata-rata skort es esai pada kelas eksperimen

μ₂ : Rata-rata skort es esai pada kelas kontrol

 H_0 : Tidak terdapat pengruh model pembelajaran $Project\ Based\ Learning\$ berbasis STEM terhadap keterampilan proses sains siswa dalam materi sistem koloid diSMA Negeri 2 Muaro Jambi

 H_a : Terdapat pengruh model pembelajaran *Project Based Learning* berbasis STEM terhadap keterampilan proses sains siswa dalam materi sistem koloid diSMA Negeri 2 Muaro Jambi

Uji – t dilakukan dengan rumus, sebagai berikut :

$$t = \frac{X1-X2}{\sqrt[S]{\frac{1}{n_1}} + \frac{1}{n_2}}$$
 (jika $n_1 \neq n_2$ dan varians homogen)

$$t = \frac{X1 - X2}{S\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$
 (jika $n_1 = n_2$ dan varians homogen)

untuk menghitung simpangan baku (s) masing-masing kelompok kelas digunakan rumus :

$$S^{2} = \frac{n \sum X_{i}^{2} - (\sum x_{i})^{2}}{n (n-1)}$$

Sedangkan untuk menghitung simpangan baku (s) gabungan kedua kelompok kelas dapat diturunkan dari rumus varians (S^2)

$$S^2 = \frac{(n1-1)S_1^2 - (n2-1)S_2^2}{N1+n2-2}$$

Keterangan:

 X_1 = Skor rata-rata kelas eksperimen

 $X_2 =$ Skor rata-rata kelas kontrol

 S_1^2 = Varians kelas eksperimen

 S_2^2 = Varias kelas kontrol

 n_1 = jumlah siswa kelas eksperimen

 n_2 = Jumlah siswa kelas kontrol

Adapun kriteria pengujian, sebagai berikut :

- 1) Hipotesis alternatif (Ha) diterima jika thitung > ttabel, pada taraf nyata 95% (α =0,05) dan derajat kebebasan adalah (n_1 + n_2 2), maka H0 ditolak.
- 2) Hipotesis alternatif (Ha) ditolak jika thitung \leq ttabel, pada taraf nyata 95% ($\alpha = 0.05$) dan derajat kebebasan adalah ($n_1 + n_2 2$), maka H0 diterima