ANALISIS EFISIENSI TEKNIS PENGGUNAAN PUPUK PADA USAHATANI PADI SAWAH DI KECAMATAN BATANG ASAM KABUPATEN TANJUNG JABUNG BARAT

SKRIPSI

CAHAYA ELISABETH FALENSIA BR. NAIBAHO

JURUSAN AGRIBISNIS
FAKULTAS PERTANIAN
UNIVERSITAS JAMBI
2024

ANALISIS EFISIENSI TEKNIS PENGGUNAAN PUPUK PADA USAHATANI PADI SAWAH DI KECAMATAN BATANG ASAM KABUPATEN TANJUNG JABUNG BARAT

CAHAYA ELISABETH FALENSIA D1B019100

Skripsi

Sebagai Salah Satu Memperoleh Gelar Sarjana Pertanian Pada Program Studi Agribisnis Fakultas Pertanian

Universitas Jambi

JURUSAN AGRIBISNIS
FAKULTAS PERTANIAN
UNIVERSITAS JAMBI

ABSTRAK

Cahaya Elisabeth Falensia, Analisis Efisiensi Teknis Penggunaan Pupuk Pada Usahatani Padi Sawah Di Kecamatan Batang Asam Kabupaten Tanjung Jabung Barat. Dibimbing oleh Dr. Ir. Saidin Nainggolan, M.Si dan Dr. Mirawati Yanita, S.P., M.M., CIQAR., CIQNR.

1. Penelitian ini bertujuan untuk mengetahui (1) Mengetahui gambaran umum usahatani padi di Kecamatan Batang Asam, Kabupaten Tanjung Jabung Barat, (2) Menghitung tingkat efisiensi teknis penggunaan pupuk pada usahatani padi di Kecamatan Batang Asam, Kabupaten Tanjung Jabung Barat. Metode analisis yang digunakan metode Data Development Analysis (DEA) dengan pendekatan input asumsi Variabel Return to Scale. Penelitian ini dilakukan di dua desa, yaitu Desa Sri Agung dan Desa Rawa Medang di Kecamatan Batang Asam Kabupaten Tanjung Jabung Barat dan dilaksanakan pada bulan Agustus 2023 sampai bulan September 2023. Hasil Penelitian menunjukkan bahwa (1) Kegiatan usahatani padi sawah dilakukan pada lahan sebesar 1 hektar dengan penggunaan input berupa benih rata-rata sebesar 24-27 kg/ha, dengan rata-rata penggunaan pupuk organic 300 kg/ha, Pupuk Urea 150 kg/ha, Pupuk KCL 80 kg/ha, Pupuk Phonska 300 kg/ha, dengan penggunaan pestisida sebsar 600-800 ml/ha/MT dan tenaga kerja bekisaran 66-69 HOK. (2) Secara keseluruhan bahwa usahatani padi sawah telah efisien secara teknis, sebanyak 40.91% petani belum efisien secara teknis dan 59.1% petani telah mencapai efisien secara teknis, dmana peluang peningkatan produktivitas sebesar 19.9%.

Kata Kunci: Usahatani Padi Sawah, Efisiensi Teknis, DEA

LEMBAR PENGESAHAN

Skripsi Dengan Judul "Analisis Efisiensi Teknis Penggunaan Pupuk Pada Usahatani Padi Sawah Di Kecamatan Batang Asam Kabupaten Tanjung Jabung Barat" yang disusun oleh Cahaya Elisabeth Falensia Br. Naibaho Nomor Induk Mahasiswa D1B019100, telah diuji dan dinyatakan lulus pada Senin, 01 April 2024 dihadapan penguji yang terdiri atas:

Ketua : Dr. Ir. Saidin Nainggolan, M.Si

Sekretaris : Dr. Mirawati Yanita, S.P., M.M., CIQAR., CIQNR.

Penguji Utama : Prof. Dr. Ir. Dompak Mt Napitupulu, M.Sc

Penguji Anggota : 1. Ir. Elwamendri, M.Si

2. Ir. Gina Fauzia. S.P., M.Si

Menyetujui

Dosen Pembimbing I Dosen Pembimbing II

 Dr. Ir. Saidin Nainggolan, M. Si
 Dr. Mirawati Yanita, S.P., M.M.

 NIP. 196008161986031004
 NIP. 197301252006042001

Mengetahui,

Ketua Jurusan Agribisnis Fakultas Pertanian Universitas Jambi

> <u>Dr. Mirawati Yanita, S.P., M.M</u> NIP. 197301252006042001

PERNYATAAN

Yang bertanda tangan dibawah ini:

Nama : Cahaya Elisabeth Falensia

NIM : D1B019100

Jurusan : Agribisnis

Dengan ini menyatakan bahwa

1. Skripsi ini belum pernah diajukan dan tidak pernah dalam proses pengajuan dimanapun juga atau oleh siapapun juga.

2. Semua sumber kepustakaan dan batuan dari pihak yang diterima selama penelitian dan penyusunan skripsi ini bebas dari plagiarisme.

3. Apabila kemudian hari terbukti bahwa skripsi ini diajukan atau dalam proses pengajuan oleh pihak lain dan terdapat plagiarisme dalam skripsi ini maka penulis bersedia menerima sanksi dengan pasal 12 ayat (1) butir (g) Peraturan Menteri Pendidikan Nasional Nomor 17 Tahun 2010 tentang pencegahan dan penanggulangan plagiat di Perguruan Tinggi yakni pembatalan ijazah

Jambi, Juni 2024

Yang Membuat Pernyataan,

Cahaya Elisabeth Falensia Br. Naibaho D1B019100

RIWAYAT HIDUP

Penulis dilahirkan di Jambi, 21 Oktober 2000 dengan nama Cahaya Elisabeth Falensia Br. Naibaho. Penulis merupakan anak kedua dari dua bersaudara dari pasangan Bapak Sabar M. Naibaho dan Ibu Herlina Murniwati Br. Hutajulu. Penulis menyelesaikan pendidikan Sekolah Dasar di SD Negeri 47 Kota Jambi pada tahun 2013. Kemudia pada tahun 2016 penulis

menyelesaikan pendidikan Sekolah Menengah Pertama di SMP Negeri 17 Kota Jambi, dan lulus Sekolah Mengenah Atas pada tahun 2019 di SMA Adhyaksa 1 Kota Jambi, pada tahun yang sama penulis diterima di Fakultas Pertanian melalui jalur tes Seleksi Bersama Masuk Perguruan Tinggi (SBMPTN). Penulis melaksanakan Magang pada semester ganjil 2022/2023 di kantor PTPN VI Kayu Aro. Penulis melakukan penelitian skripsi pada bulan Agustus 2023 sampai dengan September 2023. Pada tanggal 01 April 2024 penulis melakukan ujian skripsi yang berjudul "Analisis Efisiensi Teknis Penggunaan Pupuk pada Usahatani Padi Sawah di Kecamatan Batang Asam Kabupaten Tanjung Jabung Barat" Di bawah bimbingan Bapak Dr. Ir. Saidin Nainggolan, M.Si dan Ibu Dr. Mirawati Yanita, S.P., M.M., CIQAR., CIQNR., serta dinyatakan lulus dengan menyandang gelar Sarjana Pertanian (S.P).

UCAPAN TERIMA KASIH

Puji dan syukur penulis panjatkan kehadiran Tuhan Yang Maha Esa karena atau dengan Rahmat dan Karunia-Nya sehingga penulis dapat menyelesaikana skripsi ini. Skripsi ini disusun untuk memenuhi syarat untuk memperoleh gelar sarjana (S1) pada Fakultas Pertanian Universitas Jambi. Pada kesempatan kali ini penulis ingin menyampaikan terima kasih kepada:

- Kepada kedua orang tua yang selama ini membantu penulis dalam bentuk semangat dan materi yang tiada hentinya mengalir demi kelancaran penulis dalam menyelesaikan skripsi ini.
- 2. Kepada Bapak Dr. Ir. Saidin Nainggolan, M.Si., selaku dosen pembimbing Skripsi I dan Ibu Dr. Mirawati Yanita, S.P., M.M., CIQAR., CIQNR., selaku dosen pembimbing skripsi II dan selaku dosen pembimbing akademik yang telah sabar membimbing, memberikan arahan, semangat dan motivasi kepada penulis dalam proses pembuatan skripsi ini dari awal hingga akhir.
- 3. Kepada Bapak Dr. Forst Bambang Irawan, S.P., M.Sc. IPU selaku Dekan Fakultas Pertanian Universitas Jambi dan Ibu Dr. Mirawati Yanita, S.P., M.M., CiQaR., CIQnR. selaku Ketua Jurusan Agribisnis Fakultas Pertanian Universitas Jambi, Bapak Ir, Jamaludin, M.Si. selaku sekretaris jurusan Agribisnis, serta Pak Surip dan Kak Ria yang membantu dalam memperlancar urusan yang berkaitan dengan informasi akademik.
- 4. Kepada Bapak Prof. Dr. Ir. Dompak Mt Napitupulu, M.Sc., Bapak Ir. Elwamendri, M.Si., dan Ibu Ir. Gina Fauzia. S.P., M.Si. selaku tim penguji yang telah memberikan arahan, masukan dan saran untuk menyempurnakan skripsi ini.
- 5. Kepada Bapak/Ibu Dosen Fakultas Pertanian yang telah memberikan berbagai bekal dan berbagi ilmu pengetahuan yang bermanfaat sehingga menjadi dasar dalam penulisan skripsi ini dan para staf Bagian Akademik Fakultas Pertanian yang telah banyak membantu penulis.
- 6. Kepada Bapa penyuluh pertanian dan Bapak-bapak petani Kecamatan Batang Asam yang telah membantu dan memberikan saran serta masukan dalam penyempurnaan skripsi.

- 7. Terimakasih Kepada keluarga besar Opung Steven Hutajulu yang telah mendoakan penulis selama ini dan sangat mendukung penulis sehingga dapat menyelesaikan skripsi ini.
- 8. Kepada Kakak terkasih Yohanna Asina L.R.N, S.Si yang telah menjadi tempat berkeluh kesah dan menjadi support sistem yang terbaik dalam menyelesaikan skripsi ini.
- Kepada Yolla Pramesty, S.P., Selin Naberta, S.P, Sevia Nur Aveka, S.P, Mahdiyyah Nurul Huda, S.P dan Aura Fidiya, S.P yang telah membantu penulis dalam menyelesaikan skripsi ini.
- 10. Kepada teman-teman pengurus, teman-teman Gereja GKI Jambi dan para hamba Tuhan GKI Jambi dan teman terkasih Priskha Marsellie T, S.Kom., M.Kom., telah menemani dan menjadi saudara yang baik untuk tempat berbagai cerita suka duka sehingga penulis dapat menyelesaikan skripsi ini.
- 11. Kepada Bunda nicke, Om Doni dan teman-teman club Ocean Star Jambi yang telah menemani dan menjadi tempat berkeluh kesah yang baik sehingga penulis dapat menyelesaikan skripsi ini.
- 12. Teman-teman seperjuangan keluarga besar Agribisnis angkatan 2019 khususnya anak PA yang tidak dapat disebutkan satu persatu yang telah menjadi tempat berdiskusi.
- 13. Pihak-pihak terkait penelitian lapangan yang telah membantu penulis sehingga bisa melaksanakan penelitian di Desa Sri Agung dan Desa Rawa Medang Kecamatan Batang Asam.

Filipi 4:6-7

Jangaanlah hendaknya kamu kuatir tentang apa pun juga tetapi nyatakanlah dalam segala hal keinginanmu kepada Allah dalam doa dan permohonan dengan ucapan syukur. Damai sejahtera Allah, yang melampaui segala akal, akan memelihara hati dan pikiranmu dalam Kristus Yesus.

KATA PENGANTAR

Puji dan syukur penulis panjatkan kepada Tuhan Yang Maha Esa yang telah memberikan rahmat dan kasih karuniaNya sehingga penulis dapat menyelesaikan proposal skripsi yang berjudul "Analisis Efisiensi Teknis Penggunaan Pupuk Pada Usahatani Padi Sawah Di Kecamatan Batang Asam Kabupaten Tanjung Jabung Barat" dengan lancar tanpa adanya hambatan.

Penulis menyadari bahwa penyusunan skripsi ini tidak akan terwujud tanpa adanya bantuan dan dorongan dari berbagai pihak. Oleh karena itu, pada kesempatan berharga ini dengan penuh rasa hormat penulis mengucapkan terimakasih kepada:

- Tuhan Yang Maha Esa yang telah memberikan rahmat dan hidayahNya sehingga penulis dapat menyelesaikasn Skripsi.
- Orang tua penulis yang senantiasa orang tua dan keluarga saya yang selalu memberi dukungan doa dan motiviasi.
- 3. Bapak Dr. Ir. Saidin Nainggolan, M.Si. selaku Dosen Pembimbing skripsi I dan Ibu Dr. Mirawati Yanita, S.P., M.M., CIQAR., CIQNR selaku Dosen Pembimbing II dan serta sebagai Dosen Pembimbing Akademik yang telah memberikan dukungan serta saran dalam penulisan proposal skripsi ini.

Penulis menyadari bahwa skripsi ini masih ada kekurangan dalam penulisan. Oleh karena itu penulis mengharapkan kritik dan saran yang membangun demi penyempurnaan skripsi ini. Atas perhatiannya pembaca, penulis mengucapkan terimakasih.

Jambi, Juni 2024

Penulis

DAFTAR ISI

			Halaman
KAT	Γ Α ΡΕ	NGANTAR	I
DAF	TAR	ISI	ii
DAF	TAR '	TABEL	iii
DAF	TAR	GAMBAR	iv
DAF	TAR	LAMPIRAN	V
I.	PEN	IDAHULUAN	1
	1.1	Latar Belakang	1
	1.2	Perumusan Masalah	7
	1.3	Tujuan Penelitian	10
	1.4	Manfaat Penelitian	10
II.	TIN.	JAUAN PUSTAKA	11
	2.1	Ekonomi Komoditas Padi	11
	2.2	Konsep Usahatani	11
	2.3	Definisi Pupuk	13
	2.4	Fungsi Produksi	15
	2.5	Efisiensi Teknis Metode Data Evelopment Analisis	
		(DEA)	17
	2.6	Penelitian Terdahulu	26
	2.7	Kerangka Pemikiran	29
	2.8	Hipotesis	33
III.	ME	TODE PENELITIAN	34
	3.1	Ruang Lingkup Penelitian	34
	3.2	Sumber Data dan Metode Pengumpulan Data	35
	3.3	Metode Penarikan Sampel	35
	3.4	Metode Analisis Data	37
	3.5	Konsepsi Pengukuran	41
IV	HAS	SIL DAN PEMBAHASAN	43
	4.1	Gambaran Umum Daerah Penelitian	43
		4.1.1 Keadaan Geografis dan Administrasi Wilayah .	43
		4.1.2 Keadaan Iklim	44
	4.2	Keadaan Sosial Ekonomi penduduk	45
		4.2.1 Keadaan Penduduk	45
		4.2.2 Saranan dan Prasarana	46
	4.3.	Identitas petani Responden	48
		4.3.1 Identitas petani	48
		4.3.1.1 Usia Petani	48
		4.3.1.2 Jumlah Anggota Keluarga	49
		4.3.1.3 Tingkat Pendidikan	50
		Imgrat i chalanan	50

		4.3.1.4 Pengalaman Berusahatani	51
	4.4	Gambaran Umum Usahatani Padi Sawah di Daerah	
		Penelitian	52
	4.5	Penggunaan Input Produksi Usahatani Padi Sawah	55
		4.5.1 Luas Lahan	55
		4.5.2 Benih	56
		4.5.3 Pemupukan	57
		4.5.4 Pestisida	58
		4.5.5 Tenaga Kerja	59
	4.6	Analisis Efisiensi Teknis Penggunaan Pupuk Petani	
		Padi Sawah Di Kecamatan Batang Asam Kabupaten	60
		Tanjung Jabung Barat	
		4.5.1 Analisis Efisiensi Teknis Penggunaan Pupuk	60
	4.7	Implikasi Tindak Lanjut Hasil Penelitian	68
\mathbf{V}	KES	IMPULAN DAN SARAN	66
	5.1	Kesimpulan	66
	5.2	Saran	66
DA	FTAR 1	PUSTAKA	72
LAI	MPIRA	.N	74

DAFTAR TABEL

Tabel		Halaman
1.	Luas Panen, Produksi Dan Produktivitas Padi Menurut Kabupaten Tanjung Jabung Barat Tahun 2021	4
2.	Jumlah Petani Di Kecamatan Batang Asam	36
3.	Jumlah Populasi Dan Jumlah Petani Sampel Di Desa Penelitian Kecamatan Batang Asam Kabupaten Tanjung Jabung Barat	37
4.	Jumlah Penduduk Di Daerah Penelitian Tahun 2023	45
5.	Sarana Dan Prasarana Yang Tersedia Di Daerah Penelitian Tahun 2023	46
6.	Distribusi Responden Berdasarkan Kelompok Usia Di Daerah Penelitian Tahun 2023	49
7.	Distribusi Responden Berdasarkan Jumlah Anggota Keluarga Di Daerah Penelitian Tahun 2023	49
8.	Distribusi Responden Berdasarkan Tingkat Pendidikan Di Daerah Penelitian Tahun 2023 Distribusi Responden Berdasarkan Pengalaman	50
9.	Distribusi Responden Berdasarkan Pengalaman Berusahatani Di Daerah Penelitian Tahun 2023 Distribusi Responden Berdasarkan Luas Lahan Di Daerah	51
10.	Penelitian Tahun 2023	55
11.	Usahatani Padi Sawah Di Daerah Penelitian Tahun 2023.	56
12.	Distribusi Petani Berdasarkan Penggunaan Pupuk Pada Usahatani Padi Sawah Di Daerah Penelitian Tahun 2023 .	57
13.	Distribusi Petani Berdasarkan Penggunaan Pestisida Pada Padi Sawah Di Daerah Penelitian Tahun 2023	58
14.	Distribusi Penggunaan Tenaga Kerja Oleh Petani Pada Usahatani Padi Sawah Di Daerah Penelitian Tahun 2023.	59
15.	Estimasi Hasil Analisis Efisiensi Teknis Penggunaan Pupuk Petani Sampel Pada Usahatani Padi Sawah Irigasi Di Daerah Penelitian Tahun 2023	61
16.	Hasil Analisis DEA Petani Responden Yang Menjadi Benchmarking Dalam Usahatani Padi Sawah Di Daerah Penelitian Tahun 2023	63
17.	Hasil Analisis DEA Skala Pengembangan Usahatani Padi Sawah Per Petani Di Daerah Penelitian Tahun 2023	65

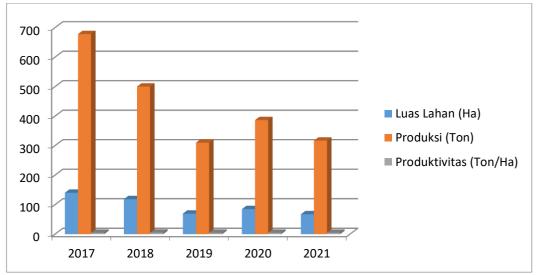
DAFTAR GAMBAR

Gambar		Halaman
1.	Perkembangan Luas Panen, Produksi dan Produksivitas Padi Sawah Provinsi Jambi, Tahun 2017-2021	2
2.	Perkembangan Luas Panen, Produksi dan Produktivitas Padi Sawah Kabupaten Tanjung Jabung Barat Tahun 2017-2021	3
3.	Kurva Metode DEA Orientasi Input	23
4.	Kurva Metode DEA Orientasi Output	24
5.	Kerangka Pemikiran	32

DAFTAR LAMPIRAN

Lampiran		Halaman
1.	Kuesioner Penelitian	74
2.	Identitas Petani Responden di Desa Rawa Medang dan Desa Sri Agung 2023	78
3.	Luas Lahan, Penggunaann Benih, Dan Produksi Pada Usahatani Padi Sawah Di Daerah Penelitian Tahun 2023	80
4.	Penggunaan Pupuk Dan Obat-Obatan Di Daerah Penelitian Tahun 2023	82
5.	Hasil Analisis DEA Efisiensi Teknis, Penggunaan Pupuk Aktual Dan Estimasi Optimal Penggunaan Pupuk Per Petani	84
6	Hasil Analisa DEA Petani Responden yang Menjadi Banchmarking dalam Usahatani Padi Sawah di Daerah Penelitian Tahun 2023.	87
7.	Tenaga Kerja	89
8.	Dokumentasi Penelitian	114

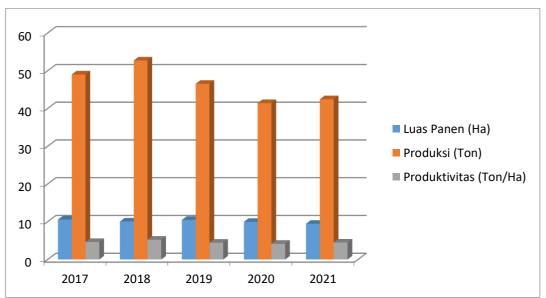
I. PENDAHULUAN


1.1 Latar Belakang

Indonesia merupakan negara berkembang yang perekonomiannya sangat bergantung pada sektor pertanian. Hal ini didukung oleh luasnya wilayah Indonesia yang membuatnya ideal untuk membudidayakan berbagai macam produk pertanian, antara lain kelapa sawit, beras, peternakan, teh, dan tanaman lainnya. Oleh karena itu daerah pedesaan dapat menjadi daerah penting. Sebab, selain memenuhi kebutuhan pangan, sektor pertanian juga memenuhi kebutuhan faktor produksi sektor industri dan sektor lainnya. Sebagian besar anggota petani dapat mengalokasikan sumber daya yang mereka miliki sebaik-baiknya pada pertanian (Agustina, 2011)

Pangan merupakan salah satu kebutuhan dasar manusia yang paling utama dan pemenugannya merupakan bagian dari hak asasi manusia, sebagaimana disebutkan dalam UU No. 18 tahun 2012 tentang pangan. Sebagian besar penduduk Indonesia lebih suka mengkonsumsi beras sebagai bahan pengikat karbohidrat dibandingkan jenis makanan pokok lainnya, sehingga dengan popularitas beras, petani harus memiliki pilihan untuk meningkatkan produksi dan efisiensi beras. Padi sebagai tanaman penghasil beras merupakan tanaman yang paling umum ditanam di Indonesia. Untuk menghasilkan hasil yang tinggi, tanaman padi membutuhkan perawatan yang hati-hati dan insentif sepanjang perkembangannya. Oleh karena itu pengelolaan tanah yang tepat, penggunaan varietas unggul, pupuk, pestisida dan faktor produksi lainnya harus diutamakan. Pemanfaatan varietas unggul bergantung pada benih yang lebih baik yang

memiliki ketahanan dari pada penyakit dan memiliki efisiensi tinggi serta memiliki harapan hidup yang relatif pendek. Karena keunggulan tersebut, lahan pertanian yang sempit dapat dimanfaatkan secara maksimal, dan diharapkan benih-benih unggul tersebut dapat tumbuh dan berproduksi sesuai dengan yang diharapkan. Selain itu, lahan pertanian dapat dilindungi dari kerusakan erosi dengan pengolahan tanah yang baik.


Tanaman padi telah berkembang di berbagai daerah di tanah air salah satunya di Provinsi Jambi. Perkembangan luas areal padi di Provinsi Jambi menurut data BPS tahun 2021, terus mengalami penurunan dari luas total 133.868,00 ha pada tahun 2016 menjadi 672.433,00 pada tahun 2021. Dari total luas lahan padi di Provinsi Jambi. Sebagai komoditi terpenting di Indonesia padi terus mengalami penurunan dari segi luasan areal, produksi dan produktivitas tanamannya setiap tahunnya. Perkembangan tanaman padi disajikan pada gambar 1 berikut:

Gambar 1. Perkembangan Luas Panen, Produksi dan Produksivitas Padi Sawah Provinsi Jambi, Tahun 2017-2021

Sumber: Badan Pusat Statistik Provinsi Jambi 2022

Seperti digambarkan pada Gambar 1 di atas, luas tanaman padi di Provinsi Jambi berfluktuasi, dengan peningkatan produktivitas tanaman setiap tahun dan penurunan produktivitas tanaman pada tahun 2019 namun kemudian meningkat pada produktivitas tanaman pada tahun 2020. Seperti ditunjukkan pada Gambar 1 di atas, yang menggambarkan luas dan produktivitas tanaman padi yang terus meningkat setiap tahunnya, hal ini menunjukkan bahwa Provinsi Jambi memiliki potensi pengembangan tanaman padi yang cukup besar. Di Kabupaten Tanjung Jabung Barat, salah satu daerah Jambi yang memiliki andil dalam pengembangan padi sebagai komoditas pertanian unggulan, perkembangan tanaman padi tidak dapat dipisahkan. Kabupaten Tanjung Jabung Barat merupakan salah satu kabupaten dengan sebagian besar masyarakatnya berprofesi sebagai petani. Adapun data perkembangan luas panen, Produksi dan Produktivitas padi menurut Kabupaten Tanjung Jabung Barat dapat dilihat pada Gambar 2.

Gambar 2. Perkembangan Luas Panen, Produksi dan Produktivitas Padi Sawah Kabupaten Tanjung Jabung Barat Tahun 2017-2021

Sumber: Dinas Tanaman Pangan Dan Hotikultura Kabupaten Tanjung Jabung Barat 2022

Gambar 2 menunjukkan bahwa selama lima tahun terakhir luas panen, produksi, dan produktivitas padi di Kabupaten Tanjung Jabung Barat berfluktuasi. Luas lahan menurun sebesar 4,8% antara tahun 2017 dan 2018, meningkat pada tahun 2019, namun kemudian menurun lagi sebesar 1,07 persen pada tahun berikutnya. Produktivitas meningkat sebesar 13% antara tahun 2017 dan 2018, namun produksi meningkat sebesar 7,5% pada tahun 2017. Tabel 1 menampilkan luas panen, produksi, dan produktivitas tanaman padi di Kecamatan Tanjung Jabung Barat.

Tabel 1. Luas Panen, Produksi dan Produktivitas Padi Menurut Kabupaten Tanjung Jabung Barat Tahun 2021

No	Kecamatan	Luas Panen (ha)	Produksi (ton)	Produktivitas (ton/ha)
1.	Tungkal ilir	137	688	5,023
2.	Bramitam	534	2,245	4,204
3.	Sebrang Kota	30	135	4,491
4.	Betara	3	11	3,666
5.	Kuala Betara	17	90	5,300
6.	Pengabuan	3,060	13,532	4,422
7.	Senyerang	3,216	14,621	4,546
8.	Tungkal Ulu	68	301	4,427
9.	Batang Asam	2,048	9,391	4,585
10.	Tebing Tinggi	189	801	4,241
11.	Merlung	0	0	0,00
12.	Muara Papalik	0	0	0,00
13.	Renah Mendaluh	155	629	4,055

Sumber: Dinas Tanaman Pangan dan Hortikultura Kabupaten Tanjung Jabung Barat 2022

Tabel 1 menunjukkan bahwa Kecamatan Batang Asam merupakan daerah urutan ke-3 jika dilihat dari luas panen produksi 2,048 ha, produksi 9,391 ton. Kabupaten Tanjung Jabung Barat merupakan salah satu daerah yang berpotensi penghasil produksi padi jika penggunaan input produksinya digunakan dengan maksimal. Peningkatan produksi padi di Kecamatan Batang Asam dapat dicapai apabila penggunaan input produksi telah efisien maka akan memberikan pendapatan yang maksimal terhadap petani padi di Kecamatan Batang Asam.

Angka produksi yang tinggi ini bukan berarti juga menunjukkan penggunaan input dan faktor produksi bisa dikatakan efisien. Petani pada daerah penelitian ini ada petani yang tidak aktif dalam kelompok tani. Adanya petani yang tidak bergabung dalam kelompok tani secara aktif mengakibatkan pengolahaan usahatani tanaman padi di Kecamatan Batang Asam menjadi kurang tepat karna tidak memiliki sumber yang jelas dan kredibel.

Tanaman padi sawah memiliki banyak kelemahan dan keterbatasan dalam penerapan teknologi, budidaya, manajemen dan permodalan. Petani padi sawah mandiri pada umumnya mengelolah lahan dengan pengetahuan lokalnya atau melalui proses belajar dari sesama petani padi sawah atau meniru cara pengolahan lahan dengen demikian produktivitas maupun mutu hasilnya masih relative rendah dibandingkan petani menggunakan teknologi yang lebih canggih.

Penggunaan input yang tidak efisien pasti akan mempengaruhi produktivitas usahatani. Penggunaan pupuk yang dilakukan dengan tepat dan efisien akan memberikan keuntungan bagi petani karena akan menghasilkan produksi dan produktivitas yang tinggi. Produktivitas yang tinggi akan menghasilkan produksi maksimal. Produktivitas tanaman padi sawah yang tinggi dapat dicapai dengan pemeliharaan yang instensif. Kapasitas petani untuk mengalokasikan berbagai faktor produksi secara efektif guna memaksimalkan potensi usaha taninya terkait erat dengan produktivitas padi. Teknik budidaya padi sawah merupakan faktor yang penting dalam memaksimalkan potensi produksi padi sawah. Teknik budidaya yang tidak sesuai dengan standar rekomendasi dapat mempengaruhi produksi gabah. Salah satu faktor yang sangat berperan untuk

mempengaruhi pertumbuhan dan produktivitas tanaman padi sawah adalah penggunaan pupuk.

Pengukuran efisiensi teknis penggunaan pupuk. Hal ini didasarkan pada tingkat efisiensi teknis yang tinggi akan mencerminkan produktivitas yang tinggi karena efisiensi teknis tidak lepas dari kombinasi penggunaan pupuk yang optimal. Efisiensi teknis menunjukkan hubungan antara input dan output. Efisiensi teknis mengukur sampai sejauh mana seorang petani mengubah input menjadi output pada tingkat produksi, faktor ekonomu dan teknologi tertentu.

Penggunaan faktor produksi penggunaan pupuk yang berdasarkan pengakuan petani di daerah penelitian masih bergantung pada kempuan finansial petani karena harga pupuk yang cenderung tinggi, sehingga penggunaan pupuk masih ada yang belum sesuai anjuran. Akses terhadap pupuk bersubsidi juga sulit yang mengakibatkan terganggunya kelancaran pemupukan padi sawah. Pemupukan berimbang, atau penerapan berbagai macam unsur hara dalam bentuk pupuk untuk mengkompensasi kekurangan unsur hara tanaman berdasarkan hasil yang diinginkan dan unsur hara tanah. Jenis pupuk yang digunakan, cara pemupukan, dosis pemupukan, dan waktu pemupukan semuanya berpengaruh terhadap keberhasilan budidaya padi. Diharapkan petani dapat mengaplikasikan pupuk yang tepat pada tanaman padi dengan mengetahui apa saja yang dibutuhkan untuk unsur hara yang baik. Hal ini akan membuat penggunaan pupuk lebih efektif dan pemeliharaan lebih efektif. Efisiensi pemupukan memberikan kontribusi baik terhadap keberlanjutan sistem produksi maupun peningkatan produksi dan pendapatan petani. Pemberian pupuk disesuaikan dengan kebutuhan tanaman dan ketersediaan unsur hara tanah agar efisien dan efektif.

Pemupukan menjadi faktor utama perhitungan biaya produksi karena lebih dari 50% biaya digunakan untuk kegiatan ini. Menurut Suharta *et.al* (2009), Pemupukan yang baik mampu meningkatkan produksi hingga mencapai produktivitas standar sesuai dengan kelas kesesuaian lahannya. Oleh karena itu perlu efektivitas dan efisiensi pemupukan dapat dicapai. Pemupukan dikatakan efektif jika sebagian besar unsur hara pupuk diserap oleh tanaman sedangkan efisiensi pemupukan berkaitan dengan hubungan antara biaya (bahan pupuk, alat kerja, dan upah) dengan tingkat produksi yang dihasilkan.

Penggunaan pupuk berdasarkan rekomendasi pada tanaman padi seperti pupuk NPK yang merupakan pupuk majemuk yang sangat berguna untuk pertumbuhan dan produksi tanaman. Pupuk NPK ini juga mengandung hara utama dan hara sekunder, pemberian satu macam pupuk sudah dapat terpenuhi kebutuhan unsur N,P dan K dan keuntungan menggunakan pupuk majemuk yaitu mudah diaplikasikan mudah diserap tanaman, lebih efektif pemakaiannya dan menghemat waktu serta lebih ekonomis. Rekomendasi pemupukan sangat penting dalam upaya meningkatkan mutu kesuburan, pemupukan dan kesehatan tanah, menentukan rekomendasi pemupukan perlu dilakukan sesuai dengan kebutuhan tanah yang dapat ditentukan berdasarkan fase pertumbuhan tanaman, uji biologis, uji kimiawi, dan melihat gejala visual pada tanaman.

Pola penggunaan pupuk yang efisien dan optimal dapat meningkatkan produktivitas tanaman padi. Penggunaan pupuk yang salah dapat menyebabkan inefisiensi pada proses produksi padi. Contohnya pemakaian jenis dan jumlah pupuk yang tidak sesuai dengan kebutuhan dan kondisi tanah atau pemilihan produk pupuk tertentu dengan harga tinggi, padahal ada produksi lain yang

kandungan komposisi haranya tetapi memiliki harga lebih murah, tentu mengakibatkan biaya produksi meningkat yang juga belum tentu dapat meningkatkan produksi seperti yang diharapkan.

Ketersediaan pupuk yang terbatas di pasaran dan harga pupuk yang cukup tinggi sehingga memerlukan perhatian yang lebih tinggi sehingga pengelolaan pupuk oleh petani agar pupuk yang digunakan dapat bermanfaat secara efektif dan efisien. Pentingnya pengetahuan petani mengenai penggunaan pupuk yang optimal serta faktor -faktor yang menyebabkan penurunan produksi pada usahataninya menjadi penting dilakukan untuk menghasilkan produksi padi secara berkelanjutan, maka perlunya dilakukan penelitian untuk menganalisis efisiensi penggunaan pupuk oleh petani. Oleh karena itu penulis mengambil judul yang akan diamati yaitu "Analisis Efisiensi Teknis Penggunaan Pupuk Pada Usahatani Padi Sawah Di Kecamatan Batang Asam Kabupaten Tanjung Jabung Barat".

1.2. Perumusan Masalah

Kecamatan Batang Asam merupakan salah satu wilayah di kebupaten Tanjung Jabung Barat yang memiliki produktivitas padi sawah mencapai Untuk mendongkrak hasil usahatani, faktor produksi harus digunakan sesuai dengan anjuran. Produktivitas dapat menurun dan keluaran mungkin tidak memuaskan jika masukan digunakan dengan cara yang tidak tepat. Selain itu, penggunaan faktor produksi dapat meningkatkan biaya produksi sehingga mengurangi keuntungan petani. Petani akan merugi karena biaya produksi tinggi dan harga hasil berfluktuasi di tingkat petani.

Faktor lainnya yang dapat mempengaruhi pengolahaan usahatani padi sawah di kabupaten Tanjung Jabung Barat yaitu harga pupuk, luas lahan dan harga gabah. Harga pupuk yang tinggi dan cenderung meningkat menyebabkan petani di Kabupaten Tanjung Jabung Barat belum melakukan pemupukan sesuai anjuran penggunaan pupuk, sehingga kebutuhan tanaman tidak tercukupi yang berdampak pada penurunan produktivitas usahatani. Luas lahan dan harga gabah berkontrobusi pada efisiensi petani di Kabupaten Tanjung Jabung Barat dalam penggunaan faktor produksi dalam jumlah yang banyak, sehingga hal tersebut mempengaruhi keputusan petani dalam penggunaan faktor produksi yang dimiliki. Sedangkan harga gabah dapat mempengaruhi petani di Kabupaten Tanjung Jabung Barat dalam penggunaan faktor produksi pada kasus penggunaan pupuk dengan harapan akan meningkatkan produksi semaksimal mungkin tanpa memperhatikan kebutuhan tanaman yang pada akhirnya mempengaruhi produksi, produktivitas dan efisiensi teknis usahatani.

Peningkatan produktivitas dapat dilakukan dengan cara peningkatan efisiensi teknis usahatani. Usahatani dikatakan efisien secara teknis apabila penggunaan faktor produksi dapat menghasilkan produksi maksimum sehingga berpengaruh pada produktivitas. Penggunaan *input* produksi dalam usahatani padi sawah mempengaruhi *output* yang dihasilkan. Apabila penggunaan *input* produksi dalam jumlah yang lebih sedikit mampu mendapatkan produksi yang lebih banyak maka usahatani disebut sudah mencapai efisiensi. Penggunaan *input* produksi dapat dikatakan efisien secara teknis apabila petani mampu mengkombinasikan dalam mengalokasikan input produksi sedemikian rupa sehingga petani memiliki

preferensi resiko produksi yang baik guna meningkatkan produktivitas yang optimal.

Hambatan bagi petani seperti biaya untuk faktor-faktor produksi yang tinggi terutama harga pupuk, harga gabah yang berfluktuasi dapat mempengaruhi pendapatan petani. Berdasarkan survey diketahui bahwa petani di Kabupaten Tanjung Jabung Barat cenderung mengikuti cara petani lainnya dalam menggunakan pupuk. Penggunaan pupuk yang tidak sesuai anjuran dapat menyebabkan kerugian secara finansial sebab banyaknya *input* yang terbuang siasia karena tidak diserap oleh tanaman secara optimal. Selain itu penggunaan pupuk yang berlebihan juga dapat merusak tanaman yang pada akhirnya akan menurunkan produktivitas tanaman.

Pada dasarnya pemupukan harus dilakukan secara tepat agar dapat memberikan produktivitasnya dan pertumbuhan yang maksimal bagi tanaman. Agar petani dapat mengelola usahataninya dengan efisien, penggunaan pupuk harus teralokasikan dengan optimal. Analisis efisiensi teknis penggunaan pupuk Kecamatan Batang Asam diperlakukan untuk menambah informasi petani mengenai penggunaan pupuk secara efisien sehingga mampu memperbaiki pengelolaan usahataninya yang pada akhirnya meningkatkan pendapatan petani. Pendekatan yang dilakukan dalam menganalisis efisiensi teknis didaerah penelitian menggunakan pendekatan metode *Data Envelopment Analysis* (DEA), yaitu suatu alat ukur kinerja efisiensi dengan mekanisme yang melibatkan sejumlah variable input untuk menghasilkan sejumlah output sehingga dapat digunakan untuk pengambilan keputusan dan peningkatan efisiensi.

Berdasarkan uraian diatas, yang menjadikan permasalahan dalam penelitian ini adalah:

- Bagaimanakah gambaran umum usahatani padi sawah di Kecamatan Batang Asam, Kabupaten Tanjung Jabung Barat?
- 2. Bagaimanakah tingkat efisiensi teknis penggunaan pupuk secara efisien pada usahatani padi sawah di Kecamatan Batang Asam, Kabupaten Tanjung Jabung Barat?

1.3 Tujuan Penelitian

Adapun tujuan penelitian ini dilakukan adalah sebagai berikut:

- Mempelajari gambaran umum usahatani padi sawah di Kecamatan Batang Asam, Kabupaten Tanjung Jabung Barat.
- 2. Menganalisis tingkat efisiensi teknis penggunaan pupuk pada usahatani padi sawah di Kecamatan Batang Asam, Kabupaten Tanjung Jabung Barat.

1.4 Manfaat Penelitian

Penelitian ini diharapkan dapat berguna untuk:

- Sebagai sumber informasi kepada petani padi sawah khususnya di Kecamatan Batang Asam, Kabupaten Tanjung Jabung Barat untuk memperhatikan penggunaan pupuk secara efisien.
- 2. Sebagai bahan kajian agar menambah dan memperluas pengetahuan sehubungan dengan efisiensi teknis usahatani padi sawah.
- Sebagai salah satu syarat untuk menyelesaikan studi tingkat sarjana pada
 Fakultas Pertanian Universitas Jambi.

II. TINJAUAN PUSTAKA

2.1 Ekonomi Komoditas Padi

Padi (Oryza sativa L.) atau biasa disebut beras merupakan produk olahan berbahan dasar beras yang ditanam petani. Di Indonesia, padi merupakan tanaman pangan penting. Selain itu, tanaman pertanian tropis dan subtropis dari Asia dan Afrika Barat masing-masing termasuk dalam beras. Setelah gandum dan jagung, tanaman padi merupakan tanaman pangan penting dunia, khususnya di Indonesia. Mayoritas orang di dunia mengonsumsi nasi sebagai sumber nutrisi utama mereka.

Beras merupakan komoditi pangan yang penting untuk dikembangkan untuk perekonomian nasional karena merupakan makanan pokok paling besar bagi penduduk Indonesia. Harga nilai beras di Indonesia nomor 2 terendah di asean jika dibandingkan dengan negara lain. Indonesia tidak dapat mengandalkan impor beras sebagai negara yang beras sebagai sumber pangan utama penduduknya karena volume perdagangan beras dunia tidak signifikan jika dibandingkan dengan kebutuhan konsumsi Indonesia. Kebijakan pemerintah yang mendukung harga pasar bagi produsen pertanian menjadi penyebab tingginya harga beras. Di Indonesia, harga beras masih dalam batas daya beli masyarakat dan pada level normal.

2.2 Konsep Usahatani

Soekartawi (2016) menjelaskan bahwa ilmu usahatani adalah ilmu yang berkonsentrasi pada bagaimana individu menyalurkan dan memfasilitasi aset yang ada secara sungguh-sungguh dan produktif untuk mendapatkan keuntungan yang

tinggi pada waktu tertentu. Dikatakan kuat jika petani atau produsen dapat meenggunakan yang dimilikinya sebaik yang diharapkan, dan efisien jika pemanfaatan sumberdaya tersebut memberikan hasil (Output) yang lebih. Prawirokusumo (1990) mendefinisikan ilmu Usahatani sebagai "ilmu terapan yang membahas atau mempelajari cara membuat atau menggunakan sumber daya dalam usaha pertanian, peternakan, atau perikanan secara efisien". Tanah, tenaga kerja, modal, dan manajemen adalah beberapa sumber daya yang digunakan dalam pertanian. Menurut Suratiyah (2015) adalah ilmu budidaya yang menghimpun dan memfasilitasi penggunaan faktor kreasi yang paling efektif dan efisien bagi usaha untuk menghasilkan pendapatan terbesar.

Menurut Kadarsan (1993), Usahatani adalah tempat seseorang atau kelompok berusaha mengelola unsur-unsur produksi seperti alam, tenaga kerja, modal, dan keterampilan untuk menghasilkan sesuatu di lapangan (Agustina, 2011). Menurut Shinta (2011), ilmu usahatani adalah suatu upaya penelaahan tritugal antara lain manusia, tanaman atau hewan, sehingga ilmu usahatani berkaitan dengan beberapa aspek yaitu aspek sosial (manusia), kimia, fisika (lahan), dan budidaya (tanaman, tumbuhan). Usahatani adalah ilmu yang mempelajari cara-cara petani mengoperasikan, mengorganisir berbagai faktor produksi (lahan, tenaga kerja dan modal), agar memberikan hasil yang maksimal. Usahatani adalah suatu tempat dimana seseorang atau sekumpulan orang berusaha mengelola unsur-unsur produksi seperti alam, tenaga kerja, modal dan keterampilan dengan tujuan untuk berproduksi atau untuk menghasilkan sesuatu di lahan pertanian. Menelaah dari berbagai pengertian tersebut dapat disimpulkan bahwa usahatani adalah cara yang dilakukan seseorang atau petani dalam

mengusahakan dan mengatur berbagai penggunaan faktor-faktor produksi seperti lahan, pupuk, benih, pemberantas hama dan penyakit tanaman, dan tenaga kerja untuk melakukan usahatani secara efektif dan efisien sehingga mengasilkan output produksi yang maksimal. Dalam usahatani memiliki empat unsur pokok yang selalu ada, unsur tersebut juga dikenal dengan istilah faktor produksi yang terdiri dari tanah, tenaga kerja, modal dan pengelolaan (Hernanto, 1996)

Berikut ini adalah faktor-faktor yang mempengaruhi keberhasilan usahatani menurut Hernanto (1996): 1) faktor internal, seperti pengelolaan petani, lahan usahatani, tenaga kerja, modal, dan tingkat teknologi, dan 2) faktor eksternal, seperti ketersediaan sarana transportasi dan komunikasi, aspek-aspek yang berkaitan dengan pemasaran produk dan usaha tani, seperti (harga produksi, harga saprodi, dll), petani memiliki akses kredit dan layanan penyuluhan.

2.3 Definisi Pupuk

Dalam PP Nomor 8 tahun 2001 Bab 1 Pasal 1 mendefinisikan bahwa, pupuk diartikan sebagai "zat kimia atau organisme yang berperan dalam penyediaan unsur hara bagi kebutuhan tanaman baik secara langsung maupun tidak langsung". Salah satu upaya penting untuk meningkatkan produksi adalah pemupukan yang masih dianggap sebagai penyumbang utama hasil pertanian. Pemupukan merupakan faktor yang penting untuk meningkatkan produksi karna belum ada penggantinya (Rosmarkam and Yuwono 2002). Proses pemupukan didasarkan pada beberapa hal yang berbeda, antara lain: 1) Persiapan penting mengingat jumlah suplemen yang didapat dari bahan induk kotoran sedikit; 2) kehilangan unsur hara akibat transportasi panen atau erosi. Karena jumlah pupuk yang dibuang dan dimusnahkan tidak sebanding dengan jumlah yang ada di dalam

tanah, penyesuaian jumlah pupuk yang diberikan memerlukan persiapan; 3) Perlu untuk meningkatkan produktivitas tanaman, dan unsur hara berperan besar dalam pertumbuhan tanaman (Taisa et al.). 2021).

Pupuk organik dan pupuk anorganik menurut Novizan (2002) terbagi menjadi dua kategori berdasarkan tempat pembuatannya. Pupuk organik merupakan bahan yang tersedia di alam berasal dari sisa-sisa jasad hidup yang bila diberikan ke tanah dapat memelihara atau meningkatkan kesuburan tanah. Beberapa contoh dari pupuk organik yang banyak dipakai adalah pupuk kandang, pupuk hijau dan kompos (Kusumawati, 2021). Pupuk kandang merupakan pupuk yang berasal dari kotoran hewan yang telah terdekomposisi secara sempurna. Pupuk hijau adalah pupuk yang didapat dari sisa tanaman atau bagian-bagian tanaman dengan tujuan untuk menambahkan bahan organik dan unsur hara. Sedangkan kompos merupakan jenis pupuk yang berasal dari sisa-sisa bahan tanaman yang telah mengalami penguraian (dekomposisi).

Pupuk anorganik atau pupuk buatan adalah pupuk yang dibuat oleh pabrikpabrik pupuk dengan meramu ban-bahan kimia anorganik berkadar hara tinggi.
Secara umum, pupuk kimia terdiri atas pupuk kimia tunggal dan pupuk kimia
majemuk. Bahan-bahan dalam pembuatan pupuk anorganik berbeda-beda,
tergantuk kandungan pupuk yang dibuat. Misalnya unsur hara fosfor terbuat dari
batu fosfor. Sebagaimana besar pupuk anorganik bersifat hidroskopis yaitu
memiliki kemampuan menyerap air diudara, sehingga semakin tinggi nilai
higroskopis pupuk tersebut semakin cepat pupuk mencair (Musnamar, 2003).
Penggunaan pupuk kimia yang terus menerus dan berlebihan menyebabkan
kerusakan tanah karena semakin rendahnya kandungan bahan organik tanah dan

pada akhirnya menurunkan hasil produksi (Tisdale et al. 1985). Aplikasi bahan organik dapat memperbaiki kondisi tanah, meningkatkan kanfungan hara yang berasal dari bahan organik yang diharapkan mampu menggantikan hara yang tidak dapat dicegah terbawa aliran air, menghambat aliran air, mengurangi pencemaran lingkungan, dan meningkatkan kualitas lahan secara berkelanjutan.

Pupuk pada padi yang umumnya digunakan pada budidaya padi sawah adalah pupuk urea, ZA, SP36, KCL dan Pupuk organik. Untuk mencapai hasil yang tinggi, pemberian pupuk harus sesuai dengan dosis yang telah ditentukan. Namun penggunaan pupuk tentunya mempengaruhi biaya yang dikeluarkan. Petani tidak memiliki modal menggunakan pupuk sesuai dengan kemampuannya.

Pemupukan untuk tanaman padi diberikan sebanyak dua kali, masing-masing setelah penyiangan pertama dan penyiangan kedua, atau ketika padi berumur antara3-4 minggu dan 6-8 minggu. Pupuk yang diberikan meliputi urea, TSP dan KCL. Dosis pemupukan untuk setiap hektar tanaman padi dalam sekali pemupukan, yaitu: urea 50 kg/ha, TSP 75 kg/ha dan KCL 50-100 kg/ha. Sementara untuk pupuk alam, sebagai pupuk dasar yang diberikann 7-10 hari setelah tanaman dapat digunakan pupuk-pupuk alam banyaknya kira-kira 10 ton/ha (Yadianto,2003).

2.4 Fungsi Produksi

Faktor produksi adalah hubungan diantara faktor-faktor produksi dan tingkat produksi yang diciptakannya. Tujuan kegiatan produksi adalah menghasilkan output sebanyak mungkin dengan input sesedikit mungkin. Fungsi produksi, sebagaimana didefinisikan oleh Sukirno (2005), menunjukkan sifat hubungan yang terjalin antara tingkat produksi dan faktor produksi. Faktor

produksi juga disebut sebagai input, dan jumlah produksi selalu disebut sebagai output. Fungsi produksi menurut Nicholson (2002) adalah fungsi yang menunjukkan hubungan matematis antara *input* yang digunakan untuk menghasilkan *output*. Persamaan berikut dapat digunakan untuk mendefinisikan fungsi produksi:

$$Q = f(K,L,M,....)$$

Dimana M adalah *input* bahan baku yang digunakan dalam penjualan, L adalah jumlah tenaga kerja, dan q adalah jumlah produk tertentu yang diproduksi selama periode waktu tertentu. Dapat dijelaskan bahwa semakin besar jumlah *output* maksimum yang dapat dihasilakan sebanding dengan jumlah *input*. Menurut Salvatore (2001) fungsi produksi menggambarkan jumlah maksimum barang yang dapat diproduksi dalam waktu tertentu untuk setiap alternatif kombinasi *input* ketika menggunakan metode produksi yang paling efisien.

Menurut Soekartawi (2002), hubungan fisik antara variabel yang dijelaskan (Y) dan (X) adalah fungsi produksi. Sebagian besar variabel logis adalah hasil, sedangkan variabel ilustratif biasanya berupa data. Fungsi produksi dapat digunakan untuk mengetahui hubungan fisik antara faktor produksi (*input*) dan produksi (*output*), serta hubungan antara variabel yang dijelaskan (*dependent variabel*) dan variabel penjelas (*independent variabel*). Dalam aritmatika langsung, kemampuan penciptaan dapat disusun sebagai berikut:

$$Y = f(X_1, X_2, X_3, ..., X_n)$$

Dimana:

Y = Produk atau variabel yang dipengaruhi oleh faktor produksi X.

X = Faktor produksi atau variabel yang mempengaruhi Y.

Dalam proses ini terdapat tiga jenis produksi yang disebut juga dengan input atau faktor produksi, sebagaimana dikemukakan oleh Soekartawi (2003):

- a. *Inscreaing return to scale* (IRS), yaitu perluasan dalam suatu unit *input* menyebabkan perluasan *output* yang semakin meningkat. Elastisitas produksi lebih besar dari satu (EP>1) dalam keadaan ini.
- b. *Constant return to scale* (CRS), yaitu perluasan satu unit *input* menyebabkan perluasan *output* dengan tingkat yang sama. Dalam hal ini, elastisitas produksi sama dengan 1>EP>0.
- c. Decreasing return to scale (DRS), yaitu peningkatan satu unit input menghasilkan penurunan output. Untuk situasi ini elastisitas produksi lebih kecil dari satu Ep<1.

Satu lagi asumsi yang dapat dibuat tentang sifat fungsi produksi dalam teori ekonomi adalah bahwa itu sama untuk semua produksi, dengan semua produsen dianggap tunduk pada hukum yang disebut: "*The Law Of Diminishing Return*". Hukum, *output* tambahan yang dihasilkan dari setiap tambahan satu unit *input* pada awalnya akan meningkat, tetapi kemudian menurun jika *input* terus meningkat, jika digunakan jenis *input* tertentu sedangkan input lainnya tetap.

2.5 Efisiensi Teknis Metode Data Evelopment Analisis (DEA)

Menurut Cooper (2006), pendekatan *Data Development Analysis* (DEA) adalah suatu metode untuk mengevaluasi kinerja suatu kegiatan yang keluarnya ditentukan oleh satu atau lebih *input* untuk menghasilkan satu atau lebih *output*. Selain itu, Cooper (2006) menyatakan bahwa metode DEA memanfaatkan program matematika canggih yang mampu menangani sejumlah besar kendala dan

variabel. Karena metode yang digunakan dapat dielakkan, maka metode DEA tidak membatasi *input* dan *output* yang akan dipilih. Metode penelitian nonparametrik yang dikenal dengan *Data Development Analysis* (DEA) didasarkan pada teknik optimasi matematis. Metode analisis DEA dibuat untuk mengukur kemampuan efisiensi relatif suatu DMU pada informasi yang berbeda dan kondisi hasil secara efisien. Efisiensi suatu DMU dibandingkan dengan DMU lain dalam sampel yang menggunakan jenis *input* dan *output* yang dikenal sebagai efisiensi relatifnya. Jika model diubah menjadi program linear dengan nilai bobot *input* dan *output*, DEA merumuskan DMU sebagai program linear fraksional untuk mencari solusinya.

Setiap DMU memilih bobot yang mencerminkan masukan dan keluaran dari DMU tersebut karena setiap DMU menggunakan kumpulan masukan bobot yang berbeda untuk menghasilkan kumpulan keluaran yang berbeda. DMU biasanya memberikan skala *output* yang besar dan bobot skala *input* yang kecil. Bobot ini menjadi penentu untuk memaksimalkan efisiensi teknis suatu DMU, bukan nilai ekonomis *input* dan *output*. Pemrograman linier digunakan dalam model DEA untuk mendapatkan rasio setinggi mungkin dari:

Eb=
$$\frac{\sum_{y=1}^{Y} U_{\text{im}} y_{\text{im}}}{\sum_{x=1}^{X} V_{\text{in}} X_{\text{in}}}$$

Dimana:

Eb = Efisiensi teknis pada faktor produksi b

Y_{im} = Jumlah dari output yang diproduksi i oleh DMU b

 X_{in} = Jumlah dari input yang diproduksi i oleh DMU b

U_{im} = Bobot yang diberikan pada output i oleh DMU b

 V_{in} = Bobot yang diberikan oleh input i oleh DMU b

Dengan fungsi batasan

$$\frac{\sum_{y=1}^{Y} U_{\text{im}} y_{\text{im}}}{\sum_{x=1}^{X} V_{\text{in}} X_{\text{in}}} \le 1 \ dan \ U_{\text{im}}, V_{\text{im}} \ge e$$

Teknik program linear digunakan untuk mencoba membuat efisiensi dari setiap DMU sebesar mungkin. Nilai 1 mengindikasikan bahwa sebuah DMU dinyatakan sudah efisien dan jika bernilai kurang dari 1 maka dikatakan belum efisien. Nilai bobot dan yang ditentukan dengan menggunakan teknis linear programing dengan fungsi tujuan memaksimalkan rasio antara virtual output dan virtual input. DEA bekerja dengan langka mengidentifikasi unit-unit yang akan dievaluasi, input serta output unit tersebut. Kemudia selanjutnya, dihitung nilai produktivitas dan mengidentifikasi unit mana yang tidak menggunakan input secara efisien atau tidak menghasilkan output secara efektif. Produktivitas yang diukur bersifat komparatif atau relative, karena hanya membandingkan antara unit pengukuran dari 1 set data yang sama, dalam hal pengukuran efisiensi, difokuskan pada penambahan output yang diperlukan dengan mempertahankan input yang telah ada.

Cooper (2006) mengklaim bahwa Farrell (1957) pertama kali mengimplementasikan konsep DEA, dan Charnes, Cooper, dan Rhodes (1978) mengembangkan model CCR, yang sekarang dikenal sebagai model CCR. Constant Return to Scale (CRS) adalah asumsi yang digunakan dalam model CCR. Menurut CRS, suatu DMU dapat menaikkan atau menurunkan variabel input dan output secara linier tanpa menaikkan atau menurunkan nilai efisiensi. Model BCC, yang pertama kali diusulkan oleh Banker, Charnes, dan Cooper (1984), dimasukkan ke dalam pengembangan DEA. Model Variabel Return To

Scale (VRS) digunakan dalam model asumsi BCC. Berbeda dengan CSR, VRS didasarkan pada asumsi bahwa input dan output DMU tidak berubah secara linear. Akibatnya, nilai efisiensi dapat dinaikkan (Increasing Return to Scale) atau diturunkan (Decreasing Return to Scale). Peningkatan efisiensi teknis merupakan salah satu cara yang dapat dilakukan untuk meningkatkan produktivitas. Srinivas et al. (2012) mengemukakan bahwa petani dapat meningkatkan produktivitas dengan cara mewujudkan efisiensi teknis.

2.5.1 Model *Constant Return to Scale* (CRS)

Pengukuran efisiensi teknis dengan asumsi *Constant Return to Scale* (CRS) menggambarkan efisiensi dari dampak manajeral dan skala. Pada prinsipnya, memiliki persamaan matematika yang sama dengan penjual dalam DEA pada model CRS, tentu saja asumsi ini sesuai pada DMU yang diskalakan secara optimal atau dengan asumsi dasar tingkat skala usaha (pengembalian) tetap, artinya jka ada tambahan input sebesar X maka output X juga akan terjadi penambahan sejumlah input yang ditambahkan.

Keluaran juga berubah sebesar satu satuan jika nilai masukan x dinaikkan atau diturunkan satu satuan. Rasio antara menambah atau mengurangi *input* dan *output* yang sama dikenal sebagai CRS. Pemrograman linier, yang terdiri dari fungsi objektif dan fungsi kendala. Tujuan model CCR adalah untuk memaksimalkan output total unit dibandingkan dengan semua unit lain dan perbedaan anatar total *output* dan *inputnya*. Rasio maksimum keluaran berbobot terhadap masukan berbobot diperkenalkan sebagai ukuran efisiensi dalam model CRS untuk setiap DMU. Batasan bahwa proporsi yang sama untuk setiap DMU

22

harus memiliki nilai yang tidak sama atau lebih besar dari satu berlaku untuk

setiap nilai bobot yang digunakan dalam suatu proposi.

2.5.2 Model Variabel Return to Scale (VRS)

Anggapan VRS yang unik dalam kaitannya dengan CRS, dimana VRS

tidak memasukkan perubahan input dan output DMU yang terjadi secara

langsung, menyiratkan bahwa model ini adalah kesimpulan bahwa pergerakan

atau DMU tidak atau belum bekerja pada skala ideal, anggapan dalam model ini

adalah bahwa proporsi antara perluasan *input* dan *output* bukanlah sesuatu yang

serupa (Variabel Return of Scale), khususnya perluasan kontribusi penciptaan X

tidak akan membuat perluasan dari peningkatan output sebesar X kali, ada

kemungkinan bahwa peningkatan hasil lebih sederhana atau lebih besar. Estimasi

efektivitas teknis dengan dugaan Variable Return of Scale (VRS) juga disebut

Overall Technical Effciency (OTE). Pure Technical Efficiency (PTE) dan Scale

Efficiency (SE) adalah dua himpunan bagian dari OE berdasarkan asumsi VRS.

Kemampuan manajemen untuk mengubah input menjadi output, misalnya,

merupakan salah satu contoh efisiensi manajerial yang dapat diukur dengan TE.

Asumsi Constant Return to Scale (CRS), skala efisiensi bernilai 1. Inefisiensi

ditunjukkan jika skala efisiensi kurang dari 1. Asumsi Constant Return to Scale

(CRS), skala efisiensi bernilai 1. Inefisiensi adalah ditunjukkan jika skala efisiensi

kurang dari 1. Secara numerik, skala kemahiran dapat disusun sebagai berikut:

$$SE = \frac{OE}{TE}$$

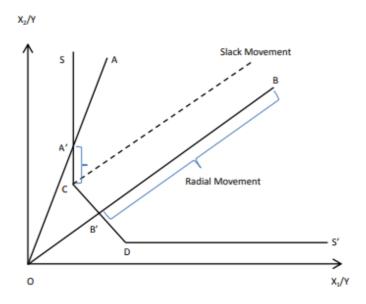
Dimana:

SE: Skala Efisiensi

OE : Overall Efficiency (Model CRS)

TE: Technical Efficiency (Model VRS)

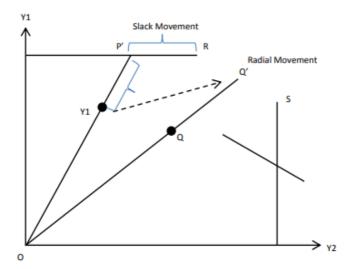
Jika menurut VRS mengatakan perhitungan DMU efektif tetapi CRS mengatakan tidak, atau sebaliknya. DMU kemudian memiliki inefisiensi skala. Ketika perhitungan DMU menghasilkan hasil yang sama baik untuk model CRS maupun VRS, maka dikatakan efisien (nilai SE=1) (Coelli,1998).


2.5.3 Orientasi Pengukuran dalam DEA

Dalam penggunaan model DEA dikenal dengan adanya orientasi yaitu orientasi input dan orientasi output, sudah dikenal luas. Model yang berorientasi pada input oriented melihat sejauh mana input dapat dikurangi dengan tetap mempertahankan tingkat output. Sebaliknya model yang menggunakan orientasi output, melihat sejauh mana output dapat ditingkatkan dengan tetap mempertahankan input (Karsak & Dursun 2014).

a. Orientasi Input

Gambaran penggunaan kontribusi pada sistem DEA dengan CRS dan VRS diakhiri dengan pengembangan *Slack Movement* dan *Radial Movement*. Ketika titik A dan B secara teknis tidak efisien tetapi titik C dan D secara teknis tidak efisien, maka pemanfaatan DEA dengan orientasi input digambarkan pada gambar di bawah ini. Agar menjadi titik-titik yang efisien secara teknis, titik A dan B mereduksi *inputnya* masing-masing menjadi titik A' dan B'. Cara yang paling umum untuk mengurangi kontribusi dari titik A ke A' dan B ke B' disebut *Radial Movement*. Masih mungkin untuk pindah ke titik C dengan mengurangi input X2 untuk menghasilkan output yang sama, meskipun faktanya titik A' secara teknis


efisien. *Slack Movement* adalah gerakan dari titik A' ke titik C. *Slack Movement* dapat menurunkan *input* atau meningkatkan *output*.

Gambar 3. Kurva metode DEA orientasi input

b. Orientasi Output

DEA berorientasi keluaran ditunjukkan pada gambar di bawah ini., *output* P dan Q dapat ditingkatkan ke titik P' dan Q' Menggunakan *input* tetap. Sistem pengamanan ini disebut *Radial Movement*. Untuk meningkatkan output Y2, titik P' dapat berpindah ke titik R, suatu gerakan yang dikenal sebagai gerakan *Output Slack Movement*.

Gambar 4. Kurva metode DEA orientasi output

Farell (1957), Efisiensi teknis (TE) adalah proporsi jumlah input yang dapat dikurangi untuk menghasilkan jumlah *output* yang tetap untuk mencapai penggunaan *input* yang efisien, sedangkan efisiensi alokatif (AE) tercermin dalam kapasitas unit usaha untuk menggunakan input dalam proporsi optimal, dengan harga input tertentu, untuk orientasi output. Untuk mencapai efisiensi ekonomi total (EE), TE dan AE dapat digabungkan.

Purwanto (2004) menyebutkan metode DEA (*Data Envelopment Analysis*) memiliki keunggulan dan kelemahan.

- a. Keunggulan metode *Data Envelopment Analysis* (DEA):
 - 1. Bisa mengolah banyak input dan output dari sekumpulan DMU.
 - 2. Tidak butuh asumsi adanya hubungan fungsional antara variabel input dengan output.
 - 3. Unit Pengambilan Keputusan (DMU) dibandingkan secara langsung dengan sesamanya.
 - 4. Input dan output dapat memiliki satuan pengukuran yang berbeda.
- b. Kelemahan meode *Data Envelopment Analysis* (DEA):

- 1. Bersifat sample selection.
- 2. Kesalahan pengukuran bisa berakibat fatal.
- DEA sangat bagus untuk estimasi efisiensi relatif UKE (untuk kegiatan ekonomi) tetapi sangat lambat untuk mengukur efisiensi absolut dengan kata lain, bisa membandingkan sesama UKE tetapi bukan membandingkan maksimisasi secara teori.
- Menggunakan perumusan linear programming terpisah untuk tiap DMU (perhitungan secara manual sulit dilakukan apalagi untuk masalah berskala besar).

Tahapan dalam pengukuran efisiensi pada metode DEA adalah sebagai berikut:

- Melakukan identifikasi DMU (Decision Making Unit) yang akan diobservasi.
- Tentukan variabel input dan variabel output. Ada enam variabel yang telah ditentukan untuk input berupa harga input (pupuk), luas lahan, pendidikan petani, umur petani, dan pengalaman bertani dan output yaitu hasil produksi.
- 3. Menghitung efisiensi tiap DMU untuk menganalisis dan memperoleh nilai efisiensi relative dengan menjabarkannya kedalam bentuk matematis (program linear), kemudian menyelesaikannya dengan metode simpleks. Terdapat dua model yang sering digunakan untuk menganalisis efisiensinya, yaitu *Constant Return to Scale* (CRS) dan *Charnes Cooper Rhodes* (CCR), *Super Efficiency* atau *Variabel Return to Scale* (VRS).

4. Setelah menentukan DMU dan mengetahui input dan output dalam menentukan nilai efisiensi dapat di gunakan alat analisis program Max DEA 8.

Model DEA dapat dibangun melalui dua pendekatan, yakni berorientasi input dan berorientasi output. DEA yang berorientasi input adalah model DEA yang meminimalkan input dengan mangasumsikan hasil output yang konstan. Sedangkan DEA yang berorientasi output adalah model DEA yang memaksimalkan output dengan mengasumsikan input konstan.

2.6 Penelitian Terdahulu

Penelitian yang dilakukan oleh Juni Hestina (2017) "Analisis Efisiensi Teknis Usaha Tani Padi di Jawa dan Luar Jawa:" Pendekatan Data Envelopment Analysis (DEA)" dan sampai pada kesimpulan bahwa padi sawah telah efisien secara teknis, dengan nilai efisiensi sebesar 0,8 baik di dalam maupun di luar Jawa Jika terdapat kekurangan dalam teori Coelli, nilai efisiensi sempurna tahun 1998 sebesar 1 menunjukkan bahwa efisiensi teknis usaha tani di dalam dan di luar Jawa masih dapat meningkat sebesar 20% jika diperhatikan penggunaan yang berlebihan input dan semakin banyaknya faktor yang berpengaruh nyata terhadap efisiensi usahatani padi, sementara kondisi sosial ekonomi yang berbeda di luar Jawa berpengaruh terhadap efisiensi teknis usahatani.

Penelitian yang dilakukan oleh Fajar Firmana dkk (2017) dengan judul "Specialized Proficiency Budidaya Padi Dalam Aturan Karawang Memanfaatkan Pendekatan Information Envelopment Investigation (DEA)" dengan tujuan penanaman padi diselesaikan oleh peternak mulai dari penanganan lahan,

perencanaan benih dan penanaman, penyiraman, pengumpulan dan pemajangan. Pemanfaatan produksi dari peternak responden masih belum sesuai dengan anjuran pejabat pemekaran. Dari seluruh responden, petani padi berjumlah 32 orang atau 50 persen dengan skor efisiensi teknis rata-rata 0,899. Penggunaan pupuk Urea lebih sedikit sebesar 19.173 kg, pupuk NPK sebesar 19.319 kg, dan tenaga kerja petani sebesar 1.385 HOK. Faktor umur, pengalaman bercocok tanam, dan penggunaan pupuk organik berpengaruh terhadap nilai efisiensi teknis usahatani padi di Desa Kalibuaya. Nilai efisiensi teknis sangat dipengaruhi oleh elemen-elemen tersebut.

Penelitian lainnya yang dapat dijadikan acuan dalam penelitian oleh Nainggolan et al (2016) dengan judul "Pendugaan Efisiensi dan Perilaku Produktivitas Petani Padi di Provinsi Jambi", dengan model Kumhakar (2002) dengan menganalisis inefiensi teknis dan fungsi produksi. Konsekuensi dari penelitian ini menunjukkan bahwa luas lahan, pupuk urea, dan tenaga kerja berpengaruh terhadap produksi. Sementara faktor benih, musim tanam, obatobatan, dan pupuk organik sangat mempengaruhi produksi, namun pupuk N dan P tidak secara langsung mempengaruhi produksi. Indikator inefisiensi teknis memiliki koefisientanda negatif, dan signifikansinya dipengaruhi oleh total pendapatan dan pengalaman usahatani petani. Efisiensi teknis memiliki nilai tinggi. Perilaku berisiko petani yang memiliki saran pemanfaatan input produksi sedemikian rupa sehingga mempengaruhi efisiensi budidaya.

Penelitian lainnya yang dapat dijadikan acuan dalam penelitian oleh Aulia Maulana (2021) dengan judul "Analisis Efisiensi Teknis Usahatani Kentang Dengan Pendekatan Metode *Data Envelopment Analysis* (DEA) Di Kecamatan

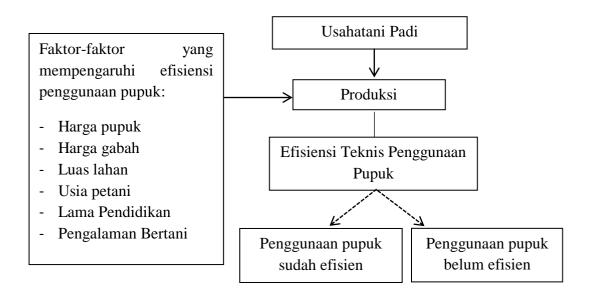
Kayu Aro Barat Kabupaten Kerinci" dengan tujuan bahwa Efisisensi petani kentang di Kecamatan Kayu Aro Barat Kabupaten Kerinci secara umum belum efisien. Nilai efisiensi teknis rata-rata petani kentang adalah sebesar 0,936 atau 93,6 % adalah buktinya. Namun demikian, petani kentang di Kecamatan Kayu Aro Kabupaten Kerinci masih dapat meningkatkan nilai efisiensinya sebesar 6,4%. Nilai efisiensi teknis menunjukan kemampuan petani untuk maksimal output dengan mengkombinasikan input. Nilai yang paling efisien adalah 1.000, sedangkan nilai yang paling tidak efisien adalah 0,763. Skala efisiensi menggambarkan kecenderungan petani responden di wilayah studi. Petani memiliki tempat dengan Increasing Return To Scale (IRS) sebesar 33,9% atau sebanyak 21 individu, Decreasing Return To Scale (DRS) sebesar 16,1 % atau sebanyak 10 orang, Constant Return To Scale (CRS), adalah 14 orang atau sebesar 22,66%.

Penelitian lainnya yang dapat dijadikan acuan dalam penelitian oleh Damayanti et al (2015) dengan judul "Analisis Faktor-Faktor Yang Mempengaruhi Produksi Ubi Jalar (*Ipomoe Batatas L*) Di Kecamatan Kayu Aro Kabupaten Kerinci",dengan metode *Ordinary Least Square* (OLS). Hasil penelitian estimasi dari model faktor-faktor yang mempengaruhi produksi ubi jalar dengan menggunakan regresi linier berganda secara keseluruhan (uji f) memberikan hasil yang signifikan. Produksi ubi jalar di Kecamatan Kayu Aro Kabupaten Kerinci dijelaskan oleh faktor-faktor tersebut sebesar 71,5 persen. Di Kecamatan Kayu Aro Kabupaten Kerinci, penggunaan herbisida, luas lahan, tenaga kerja, dan benih berpengaruh nyata terhadap produksi ubi jalar (uji t).

Penelitian lainnya yang dapat dijadikan acuan dalam penelitian oleh Damayanti et al (2018) dengan judul "Analisis Penggunaan Input Yang Mempengaruhi Produksi Usahatani Kentang di Kabupaten Merangin", dengan model fungsi produksi Cobb-Douglas. Hasil penelitian dapat disimpulkan bahwa pembibitan, persiapan lahan, penyimpanan, pemeliharaan, dan pemanenan merupakan langkah awal dalam budidaya kentang di Kabupaten Jangkat. Irigasi, penyiangan dan pemupukan merupakan contoh tindakan pemeliharaan. Kontribusi pada budidaya kentang sekaligus secara fundamental mempengaruhi produksi kentang, sedangkan beberapa input yang mempengaruhi hasil produksi meliputi Lahan Tanah (X1), Benih (X2), Pupuk (X4), Pestisida (X5) dengan nilai Sig, < 0,05, sedangkan informasi yang tidak terpengaruh adalah usaha (X3) dengan nilai Sig. > 0,05.

2.7 Kerangka Pemikiran

Kombinasi berbagai faktor produksi seperti lahan, pupuk, tenaga kerja, dan keahlian serta modal pada usahatani akan berpengaruh terhadap hasil produksi, hasil produksi yang maksimal didapat dari penggunaan input produksi yang optimal untuk diperlukan bagaimana mengalokasikan dan menganalisis penggunaan fakor-faktor produksi tersebut sehingga tercapai efisiensi. Usahatani yang efisien diketahui dari perbandingan antara jumlah produksi dengan biaya produksi pada usaha tani untuk mengetahui keuntungan dan kerugian petani. Semakin efisien faktor input yang digunakan maka keuntungan petani juga akan semakin tinggi sebab produktivitas usahatani yang meningkat.


Pada usahatani padi sawah, input produksi yang memiliki persamaan cukup besar dalam menunjang produksi padi sawah yaitu pupuk. Penggunaan

pupuk oleh petani dipengaruhi oleh beberapa faktor seperti: modal, harga beras, luas lahan dan pengetahuan petani, pendidikan, dan usia. Dosis pupuk yang digunakan mempengaruhi produksi tanaman padi sawah, pemupukan yang baik mampu meningkatkan produksi hingga mencapai produktivitas standar sesuai. Pada umumnya petani justru menambah input tersebut terus menerus dengan harapan dapat terus meningkatkan produksi padi yang diusahakannya tanpa mengetahui input yang diberikan sudah optimal atau belum dikarenakan kurangnya pengetahuan dalam bertani. Penambahan input produksi berupa pupuk belum tentu meningkatkan jumlah produksi yang dihasilkan dalam jumlah yang sama.

Harga pupuk, harga gabah dan luas lahan diduga pengaruh terhadap kebiasaan petani di dalam penggunaan pupuk. Dimana pada saat harga pupuk naik, maka petani cenderung untuk mengurangi dosis pupuk yang digunakan dan akan menambah biaya pada produksi. Hal ini dilakukan petani untuk mengurangi biaya yang dikeluarkan namun apabila harga pupuk kembali normal maka petani menambahkan dosis pupuk seperti sebelum harga pupuk mengalami kenaikan. Sedangkan untuk harga gabah diasumsikan bahwa apabila harga gabah meningkat maka dosis pupuk yang digunakan juga meningkat begitu pula dengan luas lahan dimana petani cenderung berpikir untuk menggunakan pupuk sesuai dengan luas lahan yang dimiliki semakin luas lahan yang dimiliki semakin banyak petani dalam menggunakan pupuk.

Usia memiliki pengaruh negatif terhadap usahatani petani karena kinerja petani dipengaruhi oleh umur petani, maka bertambahnya umur petani mengakibatkan penurunan efisiensi teknis petani dalam menjalankan usahataninya. Sedangkan efisiensi teknis juga dipengaruhi secara positif oleh pendidikan, jika dibandingkan dengan petani yang memiliki tingkat pendidikan lebih rendah, petani yang memiliki tingkat pendidikan lebih tinggi juga memiliki jaringan yang lebih luas sehingga memungkinkan mereka memperoleh akses informasi yang lebih luas akses informasi yang diperoleh bias lebih luas dan lebih cepat dibandingkan dengan petani yang memiliki tingkat pendidikan yang lebih rendah sehingga dapat membantu petani memperoleh informasi mengenai teknologi, informasi penggunaan input yang tepat, serta pengetahuan mengenai teknologi, informasi penggunaan input yang tepat, serta pengetahuan mengenai teknik budidaya yang dapat membantu petani dalam mengelola usahataninya.

Harga pupuk yang terus naik setiap tahunnya tentu memiliki pengaruh yang cukup tinggi bagi sektor pertanian dimana biaya pupuk dapat mencapai 50% dari harga perawatan padi sawah. Hal ini menjadi efisiensi suatu keharusan bagi usahatani padi untuk terus dapat mengoptimalkan input yang ada agar dapat menghasilkan output yang maksimal agar usaha dapat terus bertahan. Menggunakan *input* produksi dalam jumlah yang lebih kecil atau *input* yang sama akan menghasilkan lebih banyak *output*. Jika petani mampu menggabungkan dan mengalokasikan *input* produksi sedemikian rupa sehingga memiliki preferensi risiko produksi yang baik untuk meningkatkan produktivitas yang optimal, maka penggunaan *input* produksi dikatakan efisien secara teknis. kerangka penelitian dibawa ini digunakan untuk mempermudah memahami konsep permasalahan yang dibahas terkait dengan hubungan antar variable independen dan dependen, berikut adalahh model dari kerangka pemikiran dari penelitian ini:

Gambar 5. Kerangka Pemikiran

Keterangan:

: Menyatakan Pengukuran

----> : Menyatakan Hasil

: Menyatakan Hubungan

Penelitian ini akan mengukur efisiensi menggunakan model pendekatan DEA (*Data Envelopment Analysis*) dengan asumsi yang berorientasi input dan menggunakan model *Variabel Return to Scale* (VRS) untuk mengetahui bagaimana variabel tingkat produksi dan produktivitas dihubungkan dengan variabel luas lahan, harga pupuk dan harga beras, pendidikan, pengalaman bertani dan usia petani untuk mengevalusi DMU yang ada dengan menggunakan Max DEA 8.

2.8 Hipotesis

Adapun Hipotesis yang akan diuji dalam penelitian ini:

- Diduga penggunaan pupuk di daerah penelitian dilakukan secara efisien.
- Diduga harga pupuk, usia petani, pendidikan dan luas lahan berpengaruh nyata terhadap penggunaan pupuk oleh petani di daerah penelitian.

III. METODE PENELITIAN

3.1 Ruang Lingkup Penelitian

Penelitian ini menganalisis efisiensi penggunaan pupuk pada usahatani padi di Kecamatana Batang Asam, Kabupaten Tanjung Jabung Barat. Kegiatan penelitian dilakukan di Desa Sriagung dan desa Rawa Medang Kecamatan Batang Asam, Kabupaten Tanjung Jabung Barat. Penentuan lokasi penelitian dilakukan dengan sengaja (*purposive*) dengan pertimbangan bahwa Kecamatan Batang Asam merupakan salah satu sentra tanaman padi di Kabupaten Tanjung Jabung barat.

Objek yang digunakan dalam penelitian ini yaitu petani padi. Ruang lingkup pada penelitian ini dibatasi untuk mengetahui penggunaan faktor yang mempengaruhi penggunaan pupuk oleh petani efisiensi dan teknis penggunaapupuk pada usahatani padi. Penelitian ini dibatasi dengan memanfaatkan metode analisis DEA (Data Envelopment Analysis) dalam pengukuran efisiensi teknis penggunaan pupuk pada usahatani padi di Kecamatan Batang Asam, Kabupaten Tanjung Jabung Barat.

Penelitian ini dilaksakan pada bulan Agustus hingga September tahun 2023. Adapun data yang diambil dan dibutuhkan dalam penelitian ini sebagai berikut:

- Identitas petani sampel yang meliputi nama, umur, tingkat pendidikan dan pengalaman bertani.
- 2. Data penggunaan faktor produksi yang digunakan meliputi jumlah pupuk yang digunakan (kg/tahun), luas lahan (ha/tahun).

- 3. Jumlah produksi padi yang diusahakan (kg/ha/tahun).
- 4. Jumlah tenaga kerja (HOK).
- 5. Harga jual produksi padi (Rp/kg).
- 6. Harga pembelian pupuk yang digunakan (Rp/kg)
- 7. Data-data lain yang diperlukan dan berhubungan dengan penelitian ini.

3.2 Sumber dan Metode Pengumpulan Data

Data yang diperlukan dalam penelitian ini adalah data sekunder dan data primer dimana data sekunder diperoleh dari literatur seperti jurnal ilmiah, buku, skripsi, dan publikasi lainnya yang mendukung penelitian ini sedangkan data primernya diperoleh langsung melalui wawancara kepada petani padi di Desa Sri Agung dan Rawa Medang, Kecamatan Batang Asam, Kabupaten Tanjung Jabung Barat, Provinsi Jambi dengan menggunakan daftar pertanyaan (kuesioner) yang telah dibuat terlebih dahulu.

Metode pengumpulan data yang dilakukan penelitian adalah menggunakan metode observasi dilapangan, survey dengan cara mengambil sampel sebagai suatu perwakilan dalam populasi yang dianggap mewakili, serta dokumentasi untuk mencari data variabel yang berupa catatan data penggunaan dan harga faktor produksi, data produksi, dan harga jual beras di lokasi penelitian untuk menunjang pengumpulan data dilapangan dan data dari instansi yang berhubungan dalam penyusunan penelitian ini.

3.3 Metode Penarikan Sampel

Pada penelitian ini akan dilakukan di Desa Sri Agung dan Rawa Medang Kecamatan Batang Asam, Kabupaten Tanjung Jabung Barat Provinsi Jambi. Dalam penelitian ini data yang diambil yaitu secara sengaja, di Kecamatan Batang Asam karena mengusahakan padi sawah irigasi.

Tabel 2. Jumlah Petani di Kecamatan Batang Asam

Nama Desa	Jumlah Petani
Sri Agung	487
Rawa Medang	520
Jumlah	1007

Tabel 2 menjelaskan bahwa jumlah petani di Desa Sri Agung yaitu sebanyak 487 orang petani dan jumlah petani di Desa Rawa Medang sebanyak 520 orang petani sehingga jumlah petani yang mengusahakan padai sawah sebanyak 1007. Dalam penelitian ini pengambilan sampel dilakukan secara acak atau *random sampling*. Rumus Taro Yamane atau Slovin digunakan untuk menghitung ukuran sampel (Ridwan dan Akdon, 2009). Menurut rumus *Taro Yamane* adalah apabila populasi lebih 100 orang akan diambil presisi 10-15% atau 20-25% dan apabila populasi kurang dari 50 orang petani maka sampel dapat diambil keseluruhan. Berikut ini adalah rumus untuk ukuran sampel:

$$n = \frac{N}{1 + N e^2}$$

Dimana:

n = Jumlah petani padi sawah

N = Jumlah populasi

e = Presisi yang digunakan (15%)

Rumus diatas, maka diperoleh jumlah sampel sebagai berikut:

$$n = \frac{1007}{1 + 1007(0,15)^2} = \frac{1007}{1 + 1007(0,0225)} = \frac{1007}{22,68} = 44 \text{ sampel}$$

Kemudian untuk masing-masing daerah penelitian dapat ditentukan melalui metode alokasi sampel proposional yang mengacu pada rumus (Sugiyono, 2006) sebagai berikut:

$$ni = \frac{Ni}{N}n$$

Dimana:

Ni = Jumlah responden desa ke-i

ni = Jumlah sub populasi desa ke-i

n = Jumlah sampel (orang)

N = Jumlah populasi (orang)

Desa Sri Agung
$$=\frac{487}{1007}44 = 21,2 = 21$$
 (jika disamakan)

Desa Rawa Medang =
$$\frac{520}{1007}$$
 44 = 22,7 = 23 (jika disamakan)

Adapun jumlah sampel petani dari setiap populasi petani dapat dilihat pada Tabel 3.

Tabel 3. Jumlah Populasi dan Jumlah Petani Sampel di Desa Penelitian Kecamatan Batang Asam Kabupaten Tanjung Jabung Barat.

Nama Desa	Jumlah Populasi	Jumlah Sampel
Sri Agung	487	21
Rawa Medang	520	23
Jumlah	1007	44

Sumber: BPP, Desa Sri Agung dan Rawa Medang Kecamatan Batang Asam

3.4 Metode Analisis Data

Analisis data adalah proses meneliti, menganalisis, membandingkan, dan membuat interpretasi yang diperlukan dari data yang ada. Selain itu, tujuan analisis data adalah agar data yang telah dikumpulkan lebih mudah dibaca, dipahami, dan diinterpretasikan dengan benar.

Data yang diperoleh dari reponden menggunakan statistik. Statistik yang digunakan untuk analisis data dalam penelitian yaitu metode analisis deskriptif kualitatif digunakan untuk mengetahui gambar data-data yang sudah dikumpulkan dan menjelaskan mengenai gambaran umum daerah penelitian, karakteristik petani responden, keragaman kegiatan usaha tani, dan pemanfaatan faktor produksi pupuk dari tanaman padi yang diusahakannya. Sedangkan kesimpulan umum diambil dari analisis kuantitatif efisiensi teknis penggunaan pupuk di Kecamatan Batang Asam Kabupaten Tanjung Jabung Barat dengan membuat kesimpulan yang berlaku secara umum.

Program R-Studio yang mengacu pada pendekatan output *Variabel Return to Scale* (VRS) digunakan untuk mengestimasi suatu analisis dengan menggunakan metode non parametik model DEA (*Data Envelopment Analysis*) untuk menjawab permasalahan kedua, yaitu untuk menentukan tingkat efisiensi teknis. Pendekatan non parametrik yang disebut *Data Envelopment Analysis* (DEA) digunakan untuk mengukur efisiensi teknis dari Dicision Making Unit (DMU) dan membandingkannya dengan DMU lainnya. Itu dikembangkan sebagai bagian dari pengembangan Linear Programming (LP). Dynamic Unit (DMU) atau unit dinamis adalah istilah yang digunakan untuk unit yang akan diestimasi profisiensinya dalam ulasan ini, unit yang akan diestimasi keefektifannya adalah variabel informasi pembuatan. Suatu DMU dikatakan relatif efisien jika nilai gandanya lebih besar atau sama dengan satu, yaitu nilai efisiensi 100%. Sebaliknya, suatu DMU dikatakan relatif tidak efisien jika nilai gandanya kurang dari satu. Formula program matematika dengan orientasi input dan asumsi *Variabel Return to Scale* (VRS) dapat dirumuskan sebagai berikut:

Memaksimalkan fungsi persamaan Min δ, λδ

Min δ , $\lambda\delta$; subject to

$$\sum_{i=1}^{n} \lambda i y_{ri} \ge y_{r0}, r=1, 2 \dots s$$

$$\delta_0 x_{j0} - \sum_{i=1}^n \lambda i \ x_{ri} \ge 0, j = 1, 2 \dots m$$

$$\sum_{i=1}^{n} \lambda i = 1; \lambda i \ge 0, \tag{3.1}$$

Dimana:

 $\delta = scalar$

n = jumlah DMU

x = input

y = output

 $\lambda = DMU$

atau dapat diturunkan menjadi:

Eb=
$$(\frac{\sum_{y=1}^{Y} U_{\text{im}} y_{\text{im}}}{\sum_{x=1}^{X} V_{\text{in}} X_{\text{in}}})$$
 (3.2)

Dimana:

Eb = Efisiensi teknis pada faktor produksi b

Y_{im} = jumlah dari output yang diproduksi i oleh DMU b

 X_{in} = jumlah dari input yang diproduksi i oleh DMU b

U_{im} = Bobot yang diberikan pada output i oleh DMU b

V_{in} = Bobot yang diberikan oleh input i oleh DMU b

Dengan fungsi batasan

$$\frac{\sum_{y=1}^{Y} U_{\text{im}} y_{\text{im}}}{\sum_{x=1}^{X} V_{\text{in}} X_{\text{in}}} \le 1 \, dan \, U_{\text{im}}, V_{\text{im}} \ge e \,(3.3)$$

Nilai Eb =1 mengindikasikan bahwa sebuah DMU dinyatakan sudah efisien dan jika bernilai kurang dari 1 maka dikatakan belum efisien. Pada persamaan (1) δ adalah sektor efisiensi teknis (TE), yi adalah jumlah penggunaan input (pupuk) ke i, xi adalah vektor konstanta Nx1 dari jumlah produksi-produksi untuk petani ke i, Y adalah vektor 1xM untuk penggunaan pupuk, N adalah Maktriks NxM dari jumlah input produksi yang digunakan, λ adalah vektor Mx1 dari pembobot dan δ adalah saklar. DMU ke-i (N x 1) vektor non negatif input, yi adalah DMU ke-i (M x 1) vektor non negatif output. Nilai dari δ yang dihasilkan merupakan nilai 1 mengindikasikan titik batas (*frontier*) dan unit tersebut telah efisien secara teknik.

Jika DMU memiliki perbedaan antara nilai asumsi CRS dan asumsi VRS, maka DMU tersebut tidak dapat dinyatakan efisien secara skala. Efisiensi teknis dengan model BCC yang menghasilkan efisiensi skala dapat dihitung dengan persamaan skala usaha (SE) berikut ini:

$$SE_{i} = \frac{TEi \ CRS}{TEi \ VRS}.$$
 (3.4)

Penelitian ini menggunakan model BCC asumsi skala VRS dikarenakan model ini secara umum menghasilkan skor efisiensi yang lebih baik daripada model CRS. Selain itu model VRS juga mengasumsikan bahwa DMU tidak atau belum beroprasi secara optimal sesuai untuk data yang dianalisis oleh peneliti dimana usahatani padi di lokasi penelitian hampir tidak mungkin mencapai skala optimal. Penelitian ini juga berorientasi kepada variabel input, yang berarti bahwa ketika sebuah DMU yang tidak efisien ingin mencapai level yang lebih efisien maka perlu mengurangi proporsi variabel output tetap.

3.5 Konsepsi Pengukuran

- Produksi padi adalah jumlah beras yang dihasilkan pada tanaman padi (kg/tahun)
- 2. Produktivitas adalah ukuran tingkat efisiensi, eektivitas dan kualitas setiap sumberdaya yang digunakan selama proses produksi dengan membandingkan jumlah output yang dihasilkan dengan setiap sumber yang digunakan (ton/ha).
- 3. Luas lahan adalah luas areal yang diegunakan untuk menanam tanaman padi (ha/tahun)
- 4. Pupuk pada padi sawah seperti pupuk organic dan non organic adalah jumlah pupuk yang digunakan petani dalam kegiatan usahatani padi sawah selama satu kali musim tanam (kg/ha/tahun)
- 5. Harga pupuk adalah harga yang berlaku pada daerah penelitian saat setiap penggunaan input (Rp/kg).
- 6. Harga Gabah adalah harga yang berlaku di daerah penelitian atau tepat agroindustri dari setiap penggunaan input (Rp/kg)
- 7. Usia responden petani padi yang dinyatakan dalam tahun.
- 8. Pendidikan adalah pendidikan yang dinyatakan dengan nilai 0 = tidak berpendidikan, 1 = SD, 2 = SLTP, 3 = SLTA, 4 = Diploma atau universitas.
- Pengalaman bertani adalah lamanya waktu yang dilakukan petani dalam mengolah lahan padi, dinyatakan dalam tahun.

- 10. Efisiensi teknis merupakan proses pengubahan input menjadi output, kombinasi antara kapasitas dan kemampuan unit kegiatan ekonomi untuk memproduksi hingga tingkat output maksimum dari input dan teknologi.
- 11. Metode DEA (*Data Envelopment Analysis*) adalah teknik yang berbasis program linear untuk mengevaluasi efisiensi relative dari unit pengambilan keputusan, dengan mengukur efisiensi teknik suatu *Dicision Making Unit* (DMU), dan membandingkan secara relatif terhadap DMU yang lain.
- 12. Constant Return to Scale (CRS) adalah model yang mengasumsikan pada rasio antara penambahan input dan output yang sama.
- 13. Variabel Return to Scale (VRS) adalah model yang mengasumsikan bahwa rasio antara penambahan input dan output tidak selalu sama
- 14. *Dicision Making Unit* (DMU) adalah unit yang dianalisa dalam pengukuran efisiensi.
- 15. Overall Technical Efficiency (OTE) adalah skor efisiensi berdasarkan asumsi skor efisiensi = 1
- 16. *Pure Technical Efficiency* (PTE) adalah skor efisiensi berdasarkan asumsi terjadi inefisiensi.
- 17. Scale Efficiency (SE) adalah skor efisiensi berdasarkan asumsi skala.

IV. HASIL DAN PEMBAHASAN

4.1 Gambaran Umum Daerah Penelitian

4.1.1 Keadaan Geografis dan Administrasi Wilayah

Kabupaten Tanjung Jabung Barat terletak antara 0° 53' Lintang Selatan sampai 01°41' Lintang Selatan, dan antara 103° 23' Bujur Timur sampai 104°21' Bujur Timur. Luas wilayah Kabupaten Tanjung Jabung Barat adalah 5009,82 Km². Kabupaten Tanjung Jabung Barat terdiri dari 13 Kecamatan, 20 kelurahan dan 114 Desa. Berikut batas-batas wilayah Kabupaten Tanjung Jabung Barat yang berbatasan langsung dengan:

- 1. Sebelah Utara : Provinsi Riau
- 2. Sebelah Selatan : Kabupaten Batanghari
- 3. Sebelah Barat : Kabupaten Batanghari dan Kabupaten Tebo
- 4. Sebelah Timur : Selat Berhala dan Kabupaten Tanjung Jabung Timur

Kabupaten Tanjung Jabung Barat terdiri dari 13 Kecamatan. Kecamatan Batang Asam merupakan salah satu kecamatan yang terdapat di Kabupaten Tanjung Jabung Barat yang diambil sebagai daerah penelitian, Ibukota Kecamatan Batang Asam yaitu Dusun Kebun. Secara geografis, luas wilayah Kecamatan Batang Asam adalah 1.042,37 Km² atau 104,237 ha. Kecamatan Batang Asam memiliki 11 desa. Dengan batasan wilayah sebagai berikut:

- 1. Sebelah Utara : Propinsi Riau
- 2. Sebelah Selatan : Kecamatan Merlung
- 3. Sebelah Barat : Propinsi Riau
- 4. Sebelah Timur : Kecamatan Tungkal Ulu

45

Desa Sri Agung terdapat di Kecamatan Batang Asam yang dipilih sebagai tempat

penelitian. Desa Sri Agung memiliki luas lahan 939 ha yang terdiri dari 20 RT

(Rukun Tetangga) dan 3 dusun. Secara administrasi, batas wilayah Desa Sri

Agung adalah sebagai berikut:

1. Sebelah Utara: Rawang Kempas

2. Sebelah Selatan : Dusun Kebun

3. Sebelah Barat : Suban

4. Sebelah Timur : Rawa Medang

Desa Rawa Medang terdapat di Kecamatan Batang Asam yang merupakan daerah

penelitian. Desa Rawa Medang memiliki luas lahan 109,5 ha yang terdiri dari 18

RT (Rukun Tetangga) dan 3 dusun. Secara administrasi, batas wilayah Desa Rawa

Medang adalah sebagai berikut:

1. Sebelah Utara: Tungkal Ulu

2. Sebelah Selatan : Sri Agung

3. Sebelah Barat : Sri Agung

4. Sebelah Timur : Sungai Badar.

4.1.2 Keadaan Iklim

Kecamatan Batang Asam termasuk beriklim Tropis dengan curah hujan

antara 2000-3000 mm pertahun dan jumlah hari hujan 155 hari pertahun, suhu

udara minimum rata-rata 20° C dan suhu udara maksimum rata-rata 30° C serta

kelembaban 84,5 %. Puncak bulan basah terjadi pada bulan November-bulan

Januari dan bulan kering pada bulan Juni-bulan Agustus.

4.2 Keadaan Sosial Ekonomi Penduduk

4.2.1 Keadaan Penduduk

Keadaan penduduk merupakan suatu aspek yang dimiliki Jumlah penduduk merupakan potensi yang berperan dalam pertumbuhan dan perkembangan perekonomian suatu wilayah. Kuantitas dan kualitas suatu penduduk akan mempengaruhi kondisi perekonomian daerah dimana penduduk berperan sebagai pengelola sumber daya alam maupun sumber daya teknologi sesuai dengan kemampuan dan pengetahuan yang dimiliki oleh penduduk setempat. Suatu daerah akan maju bila penduduk yang bertempat tingga; di daerah tersebut dapat memanfaatkan potensi yang tersedia dan memilliki tempat yang cukup. Jumlah penduduk di Kecamatan Batang Asam pada tahun 2021 adalah 33.070 jiwa dengan 317,3 jiwa/km² yang terdiri dari laki-laki sebanyak 17.231 jiwa atau 52,10% dan perempuan sebanyak 15.839 jiwa atau 47,89%. Berikut jumlah penduduk di daerah penelitian terdapat pada Tabel 4.

Tabel 4. Jumlah Penduduk di Daerah Penelitian Tahun 2023

		Jenis	Kelamin	- Jumlah Presentase	
No	Desa	Laki-laki (Orang)	Perempuan (Orang)	(orang)	(%)
1.	Lubuk Bernai	2.934	2.553	5.487	16,6
2.	Kampung Baru	2.120	2.032	4.152	12,5
3.	Tanjung Bojo	694	650	1.344	4,1
4.	Dusun Kebun	1.085	994	2.079	6,3
5.	Suban	4.351	4.092	8.443	25,5
6.	Sri Agung	1.794	1.670	3.464	10,5
7.	Lubuk Lawas	271	224	495	1,5
8.	Sungai Badar	490	468	958	2,9
9.	Sungai Penoban	1.228	1.140	2.368	7,2
10.	Rawang Kempas	817	738	1.555	4,7
11.	Rawa Medang	1.447	1.278	2.725	8,2
	Jumlah	17.231	15.839	33.070	100

Sumber: Kecamatan Batang Asam dalam Angka 2023

Pada table 4 menunjukkan penduduk pada desa dan jenis kelamin di Kecamatan Batang Asam, telihat dalam jumlah penduduk di Desa Sri Agung sebanyak 3.464 jiwa dengan presentase 10,5%. Dan penduduk di Desa Rawa Medang sebanyak 2.725 jiwa dengan presentase 8,2%. Sehingga total penduduk pada Desa Sri Agung dan Desa Rawa Medang adalah sebesar 6.189 jiwa dengan presentase 18,71%.

4.2.2 Sarana dan Prasarana

Kecamatan Batang Asam memiliki beberapa Sarana penunjang seperti sarana kesehatan, pendidikan, kesehatan, peribadatan dan transportasi. Sarana dan prasarana merupakan hal penting dalam membangun dan mengembangkan suatu wilayah. Adanya sarana dan prasarana yang memadai masyarakat akan sangan terbantu dalam melakukan kegiatan sehari-hari selain untuk meningkatkan perekonomian setempat sebab akses keluar masuk daerah juga mempengaruhi pertumbuhan perekonomian daerah. Serta membantuk kelancaran aktivitas terkait pengelolaan usahatani masyarakat. Adapun sarana dan prasarana yang ada di Kecamatan Batang Asam dapat dilihat pada Tabel 5.

Tabel 5. Sarana2 dan Prasarana Yang Tersedia di Daerah Penelitian Tahun 2023

Jenis Sarana dan Prasarana	Jumlah
SD/Min Sederajat	15
SMP/Sederajat	8
SMA/Sederajat	3
Posyandu	22
Klinik	2
Poskesdes	7
Puskesmas	1
Puskesmas pembantu	5
Mesjid	24
Mushal la/Langgar	59
Gereja	23
Pasar	6

Sumber: Kecamatan Batang Asam Dalam Angka, 2023

Tabel 5 menunjukkan terdapat 15 unit Sekolah Dasar (SD), 8 unit sekolah menengah pertama (SMP), 3 unit Sekolah Menengah Atas (SMA), sebagai sarana pendidikan yang ada di Kecamatan Batang Asam. Sarana Pendidikan merupakan sarana penunjang yang mutlak yang harus disediakan pemerintah sebagai salah satu wadah mencari ilmu, guna mencerdaskan anak bangsa dan meningkatkan kualitas sumber daya manusia. Sedangkan untuk sarana kesehatan di Kecamatan Batang Asam terdapat sejumlah sarana kesehatan seperti 22 unit Posyandu, 2 unit klinik, 7 unit Poskesdes, 1 unit Puskesmas, 5 unit Puskesmas Pembantu. Sarana kesehatan merupakan sarana yang wajib disediakan oleh pemerintah untuk mendukung serta menjaga kesehatan penduduk ada terdapat Posyandu sebanyak 22 unit, Klinik sebanyak 2 unit, Poskesdes sebanyak 7 unit, Puskesmas sebanyak 1 unit dan Puskesmas Pembantu sebanyak 5 unit. Tenaga kesehatan di kecamatan Batang Asam tercatat 2 orang dokter umum, 1 orang dokter gigi, 32 perawat/mantra, 25 orang bidan, 1 orang farmasi, 1 orang ahli gizi. dan 2 orang sanitasi. Adapula sarana yang tidak kalah penting yang harus disediakan oleh pemerintah sarana keagamaan, sarana ini penting bagi umat beragama di suatu tempat Pelayanan dalam urusan keagamaan dan kepercayaan terhadap Tuhan Yang Maha Esa juga dikembangkan dan ditingkatkan demi kehidupan masyarakat dalam mengatasi masalah. Dikecamatan Batang Asam terdapat 24 unit Mesjid, 59 unit Langgar dan 23 unit Gereja.

Sarana yang tidak kalah penting adalah sarana transportasi. Sarana transportasi merupakan salah satu sarana penting yang harus ada diwilayah yang memiliki penduduk. Sarana transportasi merupakan salah satu sarana penunjang untuk meningkatkan perekonomian masyarakat, karena semakin baik sarana dan

prasarana transportasi suatu daerah maka akan semakin mempermudah akses mobilitas di daerah tersebut. Sarana transportasi juga merupakan urat nadi bagi perkembangan suatu daerah terutama perkembangan ekonomi dan merupakan salah satu factor strategis dalam menciptakan daerah yang efektif, strategis dan dinamis. Yang dimaksud dengan transportasi tersebut berupa kondisi jalan atau akses menuju daerah tersebut, kendaraan baik motor ataupun mobil yang dapat menunjang kegiatan usahataninya.

4.3 Identitas Petani Responden

4.3.1 Identitas petani

Petani di tempat penelitian merupakan petani yang mengusahakan tanaman padi sawah irigasi. Identitas petani dilihar dari beberapa aspek seperti usia petani, tingkat pendidikanm pengalaman berusahatani, jumlah tanggungan anggota keluarga, luas lahan.

4.3.1.1 Usia Petani

Usia petani adalah usia petani pada saat dilakukannya penelitian yang dinyatakan dalam tahun dan mempengaruhi suatu keberhasilan hasil ushatanani yang dilakukan. Usia juga mempengaruhi fisik dan cara berpikir petani. Jika usia petani lebih mudah akan dapat bekerja lebih giat dan lebih kuat dibandingkan dengan usia petani yang lebih tua. Tingkat usia petani sangat mempengaruhi produktivitas kerja dalam mengelola usahataninya. Usia petani pada usahatani padi sawah dapat dilihat pada Tabel 6.

Tabel 6. Distribusi Responden Berdasarkan Kelompok Usia di Daerah Penelitian tahun 2023.

Kelompok Usia (Tahun)	Frekuensi (Orang)	Presentase (%)
27.0 – 35.0	2	4.55
36.0 - 44.0	10	22.72
45.0 - 53.0	21	47.72
54.0 - 62.0	6	13.63
63.0 - 71.0	4	9.1
72.0 - 80.0	1	2.27
Jumlah	44	100

Sumber: BPP Desa Sri Agung dan Desa Rawa Medang, 2023

Table 6 di atas, menunjukkan bahwa usia petani responden di daerah penelitian berkisaran 27 sampai 76 tahun. Rata-rata umur petani di daerah penelitian adalah 48 tahun. Pada presentase dapat dilihat umur terbanyak petani usahatani padi sawah di Kecamatan Batang Asam terdapat pada umur 47 sampai 56 tahun, dengan presentas 38,6 %.

4.3.1.2 Jumlah Anggota Keluarga

Jumlah anggota keluarga adalah dengan banyak jumlah orang dalam rumah tangga petani responden. Jumlah anggota keluarga juga sangat mempengaruhi dalam pengelolaan suatu kegiatan ekonomi, khususnya terhadap kegiatan pada usahatani petani. Jumlah anggota keluarga juga berhubungan dengan berapa baanyak tenaga kerja yang digunakan. Seberapa banyak produktivitas yang dihasilkan dan seberapa besar biaya tanggungan keluarga yang dikeluarkan. Jumlah anggota keluarga padi sawah di daerah penelitian pada Tabel 7.

Tabel 7. Distribusi Responden Berdasarkan Jumlah Anggota Keluarga di Daerah Penelitian tahun 2023.

Jumlah Anggota Keluarga (Orang)	Jumlah Petani (Orang)	Presentase (Orang)
2-3	16	36,4
4-5	28	63,6
Jumlah	44	100

Sumber: Hasil Olahan Data Primer, 2023

Tabel 7 menjelaskan bahwa jumlah anggota keluarga dengan presentase tertinggi yaitu dengan jumlah anggota keluarga berkisaran antara 4-5 orang dengan presentase sebesar 63,6 %. Rata-rata jumlah anggota keluarga di daerah penelitian sebanyak 4 orang. Dilihat dari data yang diatas maka diketahui jumlah anggota keluarga petani padi sawah di daerah penelitian relative besar dan sebagian besar anggota keluarga merupakan anggota keluarga juga termasuk tenaga kerja yang produktif sehingga dapat membantu kegiatan dalam berusahatani padi sawah tersebut.

4.3.1.3 Tingkat Pendidikan

Tingkat pendidikan merupakan tahapan pendidikan yang ditetapkan berdasarkan tingkat yang dicapai, tingkat pendidikan juga memiliki peran yang cukup penting bagi manusia, dimana pendidikan dapat menghasilkan Sumber Daya Manusia (SDM) yang berkualitas yang dapat meningkatkan mutu pembangunan dan kesejahteraan petani. Pendidikan dapat mempengaruhi cara berpikir dari petani. Tingkat pendidikan yang semakin tinggi maka kemampuan petani semakin membaik dalam menentukan dan mengambil keputusan yang tepat. Pendidikan yang dimaksud merupakan pendidikan formal petani pada Tabel 8.

Tabel 8. Distribusi Responden Berdasarkan Tingkat Pendidikan di Daerah Penelitian tahun 2023.

Tingkat Pendidikan	Jumlah Petani (Orang)	Presentase (%)
SD	14	31.8
SMP	24	54.6
SMA	6	13.6
Jumlah	44	100

Sumber: Hasil Olahan Data Primer, 2023

Tabel 8 menunjukan tingkat pendidikan petani pada daerah penelitian beragam dari tingkat SD hingga SMA. Hasil olahan data menunjukkan bahwa pendidikan terbesar terdapat di tingkat SMP dengan jumlah petani 24 petani (54,6%). Hal ini menunjukkan bahwa tingkat pendidikan di daerah penelitian masih tergolong rendah. Namun, pendidikan bukan fator terpending dalam meningkatkan produktivitas usahatani melainkan petani dengan pengalaman berusahatani yang lama petani memiliki tingkat pengetahuan dan keterampilan tingggi dalam menjalankan usahataninya sehingga cenderung memahami kondisi usahataninya dalam mengambil keputusan. Oleh sebab itu, pendidikan petani tidak mempengaruhi produktivitas usahatani padi sawah tersebut.

4.3.1.4 Pengalaman Berusahatani

Pengalaman berusahatani padi sawah diukur sejak petani mulai pertama kali mengusahakan padi sawah. Faktor yang sangat penting dalam usahatani padi sawah adalah pengalaman berusahatani. Petani yang memiliki pengalaman yang lebih lama akan memiliki tingkat pengetahuan serta keterampilan yang tinggi dalam menjalankan usahatani. Dapat dilihat pada distribusi pengalaman berusahatani petani responden di daerah penelitian pada Tabel 9.

Tabel 9. Distribusi Responden Berdasarkan Pengalaman Berusahatani di Daerah Penelitian, Tahun 2023.

Pengalaman Berusahatani	Frekuensi (Orang)	Presentase (%)
10-16	3	6.82
17-23	13	29.55
24-30	10	22.72
31-37	14	31.81
38-44	3	6.82
45-51	1	2.27
Jumlah	44	100

Sumber: Hasil Olahan Data Primer, 2023

Tabel 9 menunjukkan bahwa pengalaman berusahatani di daerah penelitian berkisar. Berdasarkan pengalaman berusahatani padi sawah dinyatakan bahwa responden telah lama berprofesi sebagai petani padi sawah karena merupakan usaha turun temurun di daerah tersebut. Hal ini sependapat dengan Hermanto (1996), bahwa pengalaman berusahatani termasuk factor yang paling menentukan keberhasilan suatu usaha karena bermanfaat untuk digunakan dalam pertimbangan usaha dan pengambilan keputusan pada proses produksi, pengolahan dan pemasaran hasil.

4.4 Gambaran Umum Usahatani Padi Sawah di Daerah Penelitian

Daerah penelitian merupakan desa sentral penghasil padi di kecamatan Batang Asam Kabupaten Tanjung Jabung Barat. Desa Rawa Medang dan Sri Agung merupakan sentral penghasil padi sawah di Kecamatan Batang Asam. Ada dua sistem tanam yang diterapkan oleh petani di Desa Sri Agung dan Rawa Medang untuk menanam padi sawah yaitu sistem benih langsung dan sistem jajar legowo. Pengairan untuk usahatani padi sawah menggunakan irigasi teknis, dimana airnya dapat diukur dan dikontrol.

Desa Sri Agung dan Desa Rawa Medang terdapat dua musim tanam padi, yang berlangsung dari bulan Oktober hingga Februari untuk musim tanam pertama dan untuk musim tanam kedua dari bulan Maret hingga Juli. Musim tanam pertama seringkali menghasilkan produksi lebih tinggi daripada musim tanam kedua. Hal ini disebabkan curah hujan yang tinggi pada musim tanam pertama dan populasi serangga yang rendah dibandingkan dengan curah hujan yang rendah pada musim tanam kedua, pasokan air yang terbatas dan populasi serangga yang tinggi sehingga terjadi perbedaan produktivitas.

Pengolahan tanah pada padi sawah Kabupaten Tanjung Jabung Barat meliputi pembersihan dan perbaikan saluran air. Lahan diberishkan dari sisa-sisa tanaman yang belum dibuang, rerumputan dan gulma lainnya agar hama dan penyakit tidak bersembunyi di gulma inang. Kemudian mengatur saluran air untuk memudahkan pengaliran air ke sawah. Pertama-tama, fungsi pematang adalah untuk menghentikan air selama penanaman agar tidak mengalir dari petanakan dan tanah lapisan atas tidak mengalir. Lalu selanjutnya adalah Pencangkulan yang dilakukan pada setiap sudut petakan sawah yang tidak terkena oleh traktor atau yang belum dibajak oleh traktor atau belum dibajak traktor karena sulit terjangkau. Pembajakan lahan yang digenangi air untuk melembutkannya. Pembajakan dilakukan dua kali, selama pembajakan pertama tanah lapisan atas dibalik dengan bijak singkal sehingga lapisan bawah berbalik menjadi lapisan atas, pembajakan dimulai dipinggir atau di tengah petakan sawah hingga kedalaman 12-20 cm. setelah dibajak, sawah digenangi air selama 5-7 hari untuk mempercepat penguraian sisa tanaman dan memecah gumpalan tanah. Selain itu, pembajakan kedua dilakukan dengan handtraktor yang membuat tanah semakin halus. Kemudian lahan digaru persemaian agar jumlah air dikurangi agar tanah macak-macak. Penggaruan dilakukan dengan cangkul dan dilakukan beberapa kali untuk membenamkan sisa-sisa tanaman. Setelah di garu pertaman, persemaian digenangi air selama 7-10 hari. Setelah beberapa hari, garu kedua dilakukan untuk meratakan tanah, meratakan tanaman yang terendam dan menyelesaikan penguburan.

Setalah dilakukan persemaian dilanjutkan dengan benih yang digunakan merupakan benih inpari 32 yang merupakan jenis benih unggulan yang

dibudidayakan dengan kebutuhan benih yang digunakan rata-rata 25 kg/ha. Benih yang ditanam menggunakan sistem jajar legowo dengan jarak tanam 4:1. Pada umur 3 hari mulai tumbuh daun pertama dan kedua dari benih yang disebar. Jika bibit tidak tumbuh dengan baik pada umur 7-10 hari, bang bibit lebih kecil, pertumbuhan pendek dan daun menguning dapat menambahkan pupuk urea untuk menyemai benih.

Pemupukan dilakukan 7 hari setelah semai. Karena tanah kering pada saat pemupukan, kemudian setelah mencampur tanah ditabur upuk urea. Lalu pengendalian hama penyakit dilakukan dengan bahan kimia dengan cara penyemprotan pestisida apabila ditemukan serangan keong Sistem usahatani padi sawah irigasi di daerah penelitian, bila dilihat dari teknologi yang ada setiap tahunnya mengalami perkembangan terutama dari penggunaan alat dan mesin (Alsintan) yang menjadi suatu program pemberdayaan dari pemerintah guna mencapai produksi yang maksimal. Alsintan yang digunakan petani dalam kegiatan usahatani padi sawah di daerah penelitian, adalah traktor yang digunakan sebagai alat pembajak lahan dan mesin combine yang digunakan sebagai alat panen. Pada saat padi masih berusia muda 0-2 minggu. Pada usia ini tanaman padi masih tumbuh dengan lambat sehingga belum terlalu membutuhkan urea. Sebaliknya, padi muda sangat membutuhkan fosfor, kalium dan sulfur. Tanaman padi memerlukan banyak hara N dibandingkan hara P ataupun K. pupuk urea perlu diberikan sebanyak 3 kali, agar pemberian pupuk N menjadi lebih efisien terserap oleh tanaman padi. Sedangkan pemberian pupuk KCL dilakukan 2 kali, agar proses pengisian gabah lebih baik. Pemupukan padi harus memperhatikan waktu pada saat pemberian pupuk, waktu yang paling baik untuk

memberikan pupuk adalah pagi hari mulai pukul 8 sampai 10 pagi. Pada rentang waktu embun meninggalkan tanaman dan sinar matahari. Sistem panen dalam kegiatan usahatani padi sawah di daerah penelitian menggunakan mesin combine, yang dimana petani tidak lagi memikirkan biaya tenaga kerja, karena apabila petani menyewa mesin tersebut maka sudah dengan tenaga kerjanya. Adanya teknologi maju yang digunakan petani dapat menghemat waktu kerja, tenaga dan biaya tenaga kerja.

4.5 Penggunaan Input Produksi Usahatani Padi Sawah

4.5.1 Luas Lahan

Lahan merupakan salah satu *input* produksi yang penting dalam usahatani padi sawah di daerah penelitian. Lahan merupakan tanah yang diolah oleh petani untuk memenuhi kebutuhan masing-masing. penggunaan luas lahan yang digunakan petani mempengaruhi hasil atau tingkat produksi pertanian yang dihasilkan. Petani yang memiliki lahan yang luas maka akan berproduksi maksimal apabila dikelola dengan secara baik, begitu juga apabila petani memiliki lahan yang sempit akan menghasilkan hasil yang sedikit. Adapun distribusi petani berdasarkan luas lahan dapat dilihat pada Tabel 10.

Tabel 10. Distribusi Responden Berdasarkan Luas Lahan Usahatani Padi Sawah di Daerah Penelitian Tahun 2023.

Luas Lahan (ha)	Jumlah Petani	Presentase (%)
1 - < 1,25	22	50
1,25 - < 1,50	2	4.54
1,5 - < 1,75	7	15.91
$1,75 - \le 2,0$	13	29.55
Jumlah	44	100

Sumber: Data primer yang diolah 2023

Tabel 10 menunjukkan bahwa sebagian besar dari petani responden di daerah penelitian memiliki luas lahan 1 ha sebanyak 22 orang yang presentasnya 50%. Sedangkan yang paling terendah adalah petani yang memiliki luas lahan 1.25 ha yaitu sebanyak 2 orang dengan presentase 4.54%. hal ini menunjukkan bahwa luas lahan yang diusahakan petani di daerah penelitian relatif besar. Selain itu semakin luas lahan yang dimiliki petani, maka akan semakin besar potensi hasil yang diperoleh, serta biaya usahatani yang dikeluarkan juga semakin besar. Pada umumnya lahan yang dimiliki oleh petani hasil peninggalan dari orang tua atau warisan dan dibeli oleh petani.

4.5.2. Benih

Salah satu sarana produksi yang sangat penting dalam memproduksi suatu komoditas petanian adalah benih. Benih yang digunakan petani dalam usahatani padi sawah di Desa Sri Agung dan Desa Rawa Medang adalah benih unggul berlabel Inplara 32. Ada beberapa petani yang masih menggunakan benih local seperti Kencana, dan Melati. Sumber benih yang dihasilkan petani sampel di daerah penelitian yaitu besar dari penangkar, membeli, milik pribadi dan ada juga yang berasal dari kelompok tani. Penggunaan benih yang ada di daerah penelitian dapat dilihat pada Tabel 11.

Tabel 11. Distribusi Responden Berdasarkan Penggunaan Benih Usahatani Padi Sawah di di Daerah Penelitian Tahun 2023.

Penggunaan benih (kg/ha)	Jumlah Petani	Presentase (%)
20-23	6	13.64
24-27	16	36.36
28-31	14	31.82
32-35	1	2.27
36-39	0	0
40-43	7	16
Jumlah	44	100

Sumber: Data primer diolah,2023

Tabel 11 menunjukkan bahwa penggunaan benih yang ada di daerah penelitian berkisar 20-40 kg/ha. Penggunaan benih pada padi sawah paling besar

berada pada 24-27 kg/ha yaitu 16 orang petani dengan persentase 36.36% dan penggunaan benih padi sawah yang paling sedikit berada pada 32-35 kg/ha yaitu 1 orang petani dengan persentase 2.27%. Penggunaan benih dengan varietas unggul yaitu inplara 32, yaitu dimana kegunaan dari varietas tersebut adalah mengurangi resiko gagal dalam usahatani.

4.5.3. Pemupukan

Pupuk adalah unsur hara yang sangat dibutuhkan oleh tanaman sehingga dapat menunjang pertumbuhan dan perkembangan yang optimal bagi padi sawah yang penggunaannya sesuai dengan kondisi tanah. Berdasarkan hasil penelitian yang telah dilakukan menunjukkan bahwa penggunaan pupuk dalam usahatani padi sawah di Desa Rawa Medang dan Desa Sri Agung bervariasi berdasarkan kebutuhan dan kemampuan petani. Pada umumnya petani di daerah penelitian menggunakan pupuk Organik, pupuk Urea, pupuk KCL, pupuk Phonska. Pemupukan pada usahatani padi sawah dilakukan ada yang dua kali ada yang yang melakukan pemupukan hingga 3 kali. Penggunaan pupuk pada usahatani padi sawah berbeda-beda jenisnya sesuai kebutuhan pada usahatani padi sawah. Pupuk yang digunakan petani diperoleh dari subsidi pemerintah, toko terdekat dan ada yang membeli dari online. Penggunaan pada usahatani padi sawah di daerah penelitian pada Tabel 12.

Tabel 12. Distribusi Petani Berdasarkan Penggunaan Pupuk Pada Usahatani Padi Sawah di di Daerah Penelitian Tahun 2023.

No	Uraian Penggunaan Pupuk	Rekomendasi	Rata-rata
	(kg/ha/MT)	(kg/ha)	(kg/ha)
1.	Pupuk Organik	-	300
2.	Pupuk Urea	100-200	150
3.	Pupuk KCL	50-75	80
4.	Pupuk Phonska	200 -300	300

Sumber: Anjuran penggunaan pupuk blog gokomodo.com

Data primer diolah 2023

Tabel 12 menunjukkan bahwa responden petani di daerah penelitian menggunakan pupuk yang bervariasi dalam usahataninya berdasarkan kebutuhan dan kemampuan biaya untuk membeli pupuk yang dimiliki petani padi sawah. Jika dilihat dari keseluruhan, petani di daerah penelitian menggunakan pupuk Organik, Pupuk Urea, Pupuk KCL, Pupuk Phonska. Rata-rata penggunaan pupuk untuk memproduksi padi sawah di daerah penelitian per hektarnya, yaitu Organik 300 kg/ha, Pupuk Urea 150 kg/ha, Pupuk KCL 80 kg/ha, Pupuk Phonska 300 kg/ha.

4.5.4 Pestisida

Salah satu upaya untuk meningkatkan produksi padi sawah, perlu dilakukan teknik perlindungan hama dan penyakit. Petani yang ada di daerah penelitian melindungi tanaman menggunakan pestisida. Ada beberapa jenis pestisida yang digunakan petani di daerah penelitian yaitu insektisida, fungisida, moluskisida dan herbisida. Dapat dilihat pada Tabel 13.

Tabel 13. Distribusi Penggunaan Pestisida Pada Padi Sawah di Daerah Penelitian Tahun 2023

Penggunaan	Pestisida	Jumlah Petani	Presentase (%)
(ml/ha/MT)		(orang)	
300-500		16	36.36
600-800		24	54.55
900-1100		4	9.09
Jumlah		44	100

Sumber: Data primer oalahan 2023

Tabel 13 menunjukkan bahwa penggunaan pestisida berkisaran antara 600-800 ml/ha/MT. Sebagian besar penggunaan pestisida yang ada di daerah penelitian sebesar dengan presentase 54.55 persen dengan jumlah petani sebanyak 24 petani. Penggunaan pestisida digunakan untuk memberantas serangga atau hama yang menggunakan tanaman padi sawah. Penggunaan

pestisida dilakukan untuk memberantas serangga atau hama yang menggunakan tanaman padi sawah. Penggunaan pestisida dilakukan sebelum muncul tandatanda penyerangan hama atau penyakit, tetapi beberapa daerah penelitian penyemprotan pestisida dilakukan jika terlihata gejala-gejala yang tampak pada padi sawah.

4.5.5. Tenaga Kerja

Dalam berusaha tani tentu membutuhkan sumberdaya alam, juga membutuhkan sumberdaya manusia atau disebut dengan tenaga kerja. Tenaga kerja digunakan dalam kegiatan usahatani padi sawah mulai dari perawatan tanaman yang terdiri atas penyemprotan, penyiangan, dan pemupukan sampai dengan pemanenan dan pengakutan hasil. Tenaga kerja yang digunakan dalam berusahatani pada daerah penelitian berasal dari Tenaga Kerja Dalam Keluarga (TKDK) dan Tenaga Kerja Luar Keluarga (TKLK). Untuk TKDK berasal dari keluarga para petani itu sendiri, sedangkan TKLK berasal dari para masyarakat yang ada disekitar lokasi usahatani. Rata-rata penggunaan tenaga kerja pada daerah penelitian dapat dilihat pada tabel 14.

Tabel 14. Distribusi Penggunaan Tenaga Kerja Oleh Petani Pada Usahatani Padi Sawah di Daerah Penelitian Tahun 2023.

Tenaga kerja (HOK)	Jumlah (Orang)	Presentase
54-57	9	20.5
58-61	13	29.5
62-65	5	11.4
66-69	14	31.8
70-73	3	6.8
74-77	0	0
Jumlah	44	100

sumber: Data Primer olahan 2023

Tabel 14 dapat dilihat bahwa penggunaan tenaga kerja di daerah penelitian berkisar antara 54-73 HOK. Sebagian besar petani yang ada di daerah

penelitian menggunakan tenaga kerja pada jumlah 66-69 HOK dengan presentase 31.8 persen atau sebanyak 14 orang petani. Pengolahan lahan menjadi tahanapan produksi dengan penggunaan tenaga kerja yang paling banyak, hal ini menunjukkan karena pada saat pengolahaan lahan umumnya di daerah penelitian, penggunaan tenaga kerja lebih intensif dalam mepersiapkan media tanam untuk benih padi yang siap dipindahkan sertamelakukan penyiangan dan pemupukan agar pertumbuhan padi menjadi lebih baik.

4.6 Analisis Efisiensi Teknis Penggunaan Pupuk Petani Padi Sawah Di Kecamatan Batang Asam Kabupaten Tanjung Jabung Barat

Teknis penggunaan pupuk pada usahatani padi sawah di daerah penelitian ini menggunakan metode DEA untuk mengetahui tingkat efisiensi petani dalam penggunaan pupuk padi sawah dapat dilihat dalam analisis efisiensi teknis berikut.

4.6.1 Analisis Efisiensi Teknis Penggunaan Pupuk

Pengukuran efisiensi teknis dilakukan dengan asumsi rasio antara penambahan input dan output tidak sama (variable return to scale), yaitu penambahan input produksi sebesar X tidak akan menyebabkan penambahan output meningkat sebesar X kali, jika penambahan input produksi sebesar 10 kg/ha tidak akan menyebabkan penambahan output meningkat besar 2 kali, ada kemungkinan peningkatan output lebih kecil atau lebih besar. Adapun hasil pengukuran efisiensi teknis menggunakan metode DEA input orientation, yaitu dengan asumsi bahwa input yang dipakai belum mencapai nilai yang optimal. Hal ini sesuai dengan pendapat Banker, Charnes dan Cooper (1984) dimana asumsi ini memperkirakan bahwa DMU yang ada belum mencapai skala optimal (variable return to scale) dimana tidak setiap kenaikan input menghasilkan

output konstan. *Input orientation* memungkinkan setiap petani menurunkan penggunaan input sampai batas optimal tanpa menurunkan output yang akan dianalisis menggunakan program software DEA, dengan menggunakan metode ini tingkat potensi produksi yang mungkin dapat dicapai oleh petani akan diketahui. Menurut coelli *et al* (1998) bahwa suatu usaha dikatakan efisiensi jika nilai indeks efisiensi teknis lebih dari 0,70.

Data yang digunakan adalah data produksi selama satu tahun. Variable output yang digunakan adalah produksi padi (Y_1) , variable input yang digunakan adalah Pupuk Organik (X_1) , Pupuk Urea (X_2) , Pupuk KCL (X_3) , dan Pupuk Phonska (X_4) pada keseluruhan petani responden yaitu sebanyak 44 petani responden untuk melihat nilai efisiensi teknis petani responden pada penggunaan pupuk. Berdasarkan hasil perhitungan menggunakan Metode DEA sebagai berikut:

Tabel 15. Estimasi Hasil Analisis Efisiensi Teknis Penggunaan Pupuk Petani Sampel pada Usahatani Padi Sawah Irigasi di Daerah Penelitian Tahun 2023.

TE	Petani	Presentase
0.801 - 0.855	5	11.36
0.856 - 0.910	4	9.09
0.911 - 0.965	5	11.36
0.966 - 1.000	30	68.18
Mean		0.963
Max		1.000
Min		0,801
Jumlah Petani Nilai E = 1		26 orang
Jumlah Petani Nilai E < 1		18 orang

Sumber: Data primer yang diolah 2023

Tabel 15 menunjukkan dari 44 petani responden terdapat 26 petani yang efisien dengan nilai efisiensi 1 mengartikan bahwa petani-petani tersebut mampu mengkombinasikan *input* produksi (pupuk) secara optimal dibandingkan petani lainnya di daerah penelitian, sedangkan sebanyak 18 petani tidak enfisien secara

teknis dengan nilai efisiensi 0.801 < 1. Nilai TE < 1 mengindikasikan perlunya peningkatan efisiensi guna meningkatkan produktivitas usahatani oleh petani di daerah penelitian. Rentang nilai efisinsi di dearah penelitian yaitu berkisar antara 0.801 sampai dengan 1, sedangkan nilai rata-rata efisiensi sebesar 0.963. Perbedaan ini disebabkan adanya variasi kombinasi penggunaan pupuk oleh petani responden.

Petani responden yang mencapai nilai efisiensi teknis sama dengan satu yaitu petani no 1, 2, 3, 4, 5, 7, 8, 9, 11, 14, 17, 18, 19, 20, 22, 24, 28, 31, 35, 36, 38, 40, 41, 42, 43, dan petani no sampel 44. Petani responden yang belum mencapai nilai efisiensinya dapat menjadikan petani responden yang sudah mencapai efisien, sebagai referensi untuk memperbaiki kombinasi penggunaan input (pupuk) oleh petani responden sehingga dapat meningkatkan efisiensi teknis. Hal ini didukung oleh penelitian dari (Maiangwa et al., 2007) yang berpendapat bahwa petani dapat mudah terpengaruh mengikuti tetangga yang berhasil meningkatkan produksi pertanian mereka melalui penggunaan pupuk jenis tertentu. Penelitian ini juga sejalan dengan penelitian Aulia Maulana (2019) dengan judul Analisis Efisiensi Teknis Kentang dengan Pendekatan Data Envelopment Analysis(DEA) di Kecamatan Kayu Aro Barat Kabupaten Kerinci, yang menjelaskan bahwa terdapat 13 petani responden yang mencapai nilai efisiensi teknis sama dengan satu, yaitu petani no sampel 7, 9, 15, 20, 23, 24, 27, 28, 31, 40, 42, 43, 44, 46, 59, dan 61. Bahwa petani yang telah mencapai efisiensi bisa dijadikan referensi bagi petani lain untuk meningkatkan nilai efisiensinya. Hasil Analisa petani yang menjadi Benchmarking dalam penggunaan pupuk di daerah penelitian pada Lampiran 6

Lampiran 6 menjelaskan bahwa 59.1 % petani yang telah mencapai nilai efisiensi teknis pada penggunaan pupuk di daerah penelitian. Terdapat 1 petani yang berada pada kondisi skala pengembalian (*Return to Scale*) *Descreasing Return to Scale* artinya kondisi dimana output tambahan yang dihasilkan dengan adanya penambahan input per satu satuan unit input sudah menurun dan 8 petani lainnya berada pada kondisi *Constan Return To Scale* yaitu kondisi apabila terjadi penambahan input per satu satuan unit input yang digunakan maka akan memiliki tambahan output yang konstan sebesar input yang ditambah tersebut.

Skala pengembalian (Return to Scale) vang bervariasi ini mengindikasikan bahwa tidak semua petani yang efisien secara teknis berapa pada kondisi yang sama. Petani yang berada pada kondisi Descreasing Return To Scale namun mampu mencapai nilai efisiensi teknis artinya pada kondisi kenaikan hasil yang semakin berkurang, petani mampu mengkombinasikan penggunaan input (pupuk) secara optimal sehingga tercapai efisiensi teknis dalam pengelolaan usahataninya. Sedangkan petani yang berada pada kondisi *Constan* Return To Scale yaitu petani dengan no sampel 1, 3, 6, 8, 11, 18, 34, dan 40 adalah petani yang juga mampu mengombinasikan penggunaan pupuk secara optimal pada tingkat produksi yang dihasilkan dimana pada saat ini petani berada pada kondisi apabila terjadi penambahan input berdasarkan hasil perhitungan DEA.

Ke 26 petani dari 44 yang efisien tersebut dapat dikatakan sudah mampu mengalokasikan penggunaan pupuk secara optimal dibandingkan petani lainnya, dimana pada kombinasi penggunaan pupuk seperti yang ditampilkan pada tabel diatas ke 26 petani tersebut dapat mencapai batas kemungkinan produksi yang

ditetapkan dengan penggunaan pupuk yang efisien. Petani yang telah mencapai constan return to scale dapat benchmarking atau menjadi contoh bagi petani lainnya yang belum efisien dalam pengelolaan usahatani agar dapat meningkatkan efisiensi teknis pada usahatani yang dikelolanya. Hal ini sesuai dengan berfikir petani yang logis dimana petani tentu memilih menggunakan kombinasi input yang paling rendah untuk memproduksi tiap tingkat hasil produksi tertentu (Case & Fair 2007). Petani yang belum mencapai tingkat efisien secara teknis masih dapat meningkatkan efisiensinya dengan mensubtitusikan input yang ada secara proporisonal, sehingga mencapai penggunaan input yang efisien pada tingkat produksi tertentu yang dihasilkan.

Berdasarkan hasil analisa yang telah dilakukan diketahui bahwa ternyata penggunaan pupuk oleh petani yang efisien berbeda yang lebih kecil dari kebutuhan pupuk berdasarkan rekomendasi pemupukan yang ditetapkan untuk padi sawah, dimana rekomendasi pemupukan Organik, Urea, KCL, Phonska secara berurutan 300 kg/ha/thn, 100-150 kg/ha/thn, 75-120 kg/ha/thn, 400 kg.ha.thn. Hal ini menunjukkan bahwa efisiensi teknis dapat dicapau dengan penggunaan input yang optimal pada tingkat produksi tertentu. Ukuran besarnya tingkat perubahan output seiring dengan perubahan input secara proporsional (return to scale), dari tiap petani responden di daerah penelitian dapat dilihat pada Tabel 16.

Tabel 16. Hasil Analisa DEA Skala Pengembalian Usahatani Padi Sawah Per Petani di Daerah Penelitian Tahun 2023

1 cum ai Duci un 1 chentiun 1 unun 2020					
RTS	Jumlah Petani	Presentase			
DRS	7	15.91			
IRS	29	65.91			
CRS	8	18.18			
Jumlah	44	100			

Sumber: data primer yang diolah 2023

Berdasarkan tabel 16 diketahui bahwa dari 44 Petani sebesar 15.91% atau sebanyak 7 petani mengalami *Decreasing Return To Scale* dan sebanyak 65.91% atau 29 petani mengalami *Increasing Return To Scale* sedangkan, sebanyak 8 atau 18.18% petani berada pada kondisi *Constant Return To Scale*.

Hasil analisa menunjukkan bahwa sebagian besar petani usahatani padi sawah berada pada posisi *Increasing Return to Scale* atau kondisi dimana penambahan 1 input produksi menyebabkan output meningkat lebih dari 1 unit. Petani dapat menambah jumlah pupuk yang digunakan untuk meningkatkan produksi padi sebab penambahan penggunaan pupuk masih dapat meningkatkan produksi yang dihasilkan.

Berdasarkan hasil analisis dengan metode DEA (*Data Envelopment Analysis*) pendekatan input untuk mengalisis tingkat efisiensi petani dan penggunaan input yang optimal pada output yang dihasilkan (output tidak berubah), petani dianjurkan untuk merekomendasikan pupuk yang dipakai untuk mengoptimalkan penggunaan pupuk pada usahatani padi sawah yang dikelolanya. Hal ini dilakukan karena kenaikan produksi semakin berkurang walaupun input yang digunakan ditambah, sehingga merugikan petani apabila menambahkan penggunaan pupuk pada usahataninya.

Selain itu ternyata pada tingkat produksi yang dihasilkan (produksi aktual) petani dapat mereduksi sejumlah input secara proporsional dengan maksud mengoptimalkan penggunaan pupuk agar lebih efisien pada tingkat output yang dihasilkan. Sesuai hasil penelitian Tarihoran, (2017) bahwa penggunaan pupuk pada petani yang belum mencapai efisiensi teknis dapat mencapai nilai efisien secara teknis apabila mereduksi pupuk yang ada secara proporsional untuk

menghasilkan produksi aktual pada tanaman kubis di Desa Gajah, Kecamatan Simpang Empat, Kabupaten Karo.

Petani padi sawah yang berada pada kondisi *increasing return to scale*, yaitu penambahan 1 input produksi menyebabkan output meningkatkan lebih dari 1 unit. Petani dapat menambah jumlah pupuk yang digunakan untuk meningkatkan produksi padi sebab penambahan penggunaan pupuk masih dapat meningkatkan produksi yang dihasilkan. Namun untuk mencapai efisiensi teknis yang relative tingkat produksi yang telah dihasilkan (produksi aktual) berdasarkan analisa DEA yang telah dilakukan, petani pada kategori ini juga sebaliknya menyesuaikan penggunaan pupuk yang dipakai sesuai dengan hasil analisa yang telah dilakukan untuk dapat mencapai efisiensi teknis dalam penggunaan pupuk usahataninya. Sedangkan untuk petani yang berada pada kondisi CRS (*Constan Return To Scale*) yaitu penambahan faktor produksi sejumlah x unit akan meningkatkan penambahan hasil produksi sebesar x unit. Pada kondisi ini artinya petani masih dapat menaikkan penggunaan pupuk sampai pada titik dimana penambahan pupuk justru menurunkan produksi marginal yang dihasilkan pada tingkat produksi yang ditetapkan.

Keseluruhan petani dapat berada dalam kondisi efisien secara teknis dengan mengalokasikan penggunaan pupuk secara optimal untuk menghasilkan output yang telah dihasilkan. Berdasarkan hasil analisis teknis yang telah dilakukan, setiap petani dapat mengurangi input secara proporsional agar dapat mencapai efisiensi teknis dengan melakukan pengurangan input sejumlah slack input dan radial movement sehingga mencapai efisiensi teknis dengan output yang dihasilkan. Farell (1957) menyatakan bahwa orientasi input pada efisiensi

teknis dengan menggunakan metode DEA memiliki arti proporsi jumlah input yang dapat reduksi untuk menghasilakan jumlah output yang ditetapkan (dihasilkan) dengan penggunaan input yang efisien. Penggunaan pupuk yang tidak dapat menjadi penyebab utama timbulnya inefiensi dalam penggunaan pupuk pada usahatani. Apabila pupuk yang digunakan terlalu berlebihan atau terlalu sedikit maka menyebabkan petani tidak efisien secara teknis dalam menggunakan pupuk pada padi sawah. Hal ini sejalan dengan pendapat Savra er al, (2010) yaitu perilaku petani dalam pembelian pupuk juga dapat dipengaruhi oleh lingkungan sosial budaya petani. Petani dapat memperoleh informasi adopsi teknologi produksi pertanian dari informasi formal dan informal. Sumber informasi formal adalah peran penyuluh. Penyuluh pertanian lapangan selain mempunyai peran dalam informasi budidaya pertanian juga dapat menjadi agen pemasaran.

4.7 Implikasi Tindak Lanjut Hasil Penelitian

Penelitian ini untuk mengetahui gambaran pelaksanaan usahatani padi sawah di Kecamatan Batang Asam, Kabupaten Tanjung Jabung Barat dan untuk mengetahui penggunaan pupuk oleh petani, mengalisis efisiensi teknis reltif pada penggunaan pupuk usahatani padi sawah di Kecamatan Batang Asam, Kabupaten Tanjung Jabung Barat.

Penelitian ini menggunakan metode *Data Envelopment Analysis* (DEA) dimana metode ini memiliki keunggulan dalam mengelola banyak *input* dan *output*, responden yang di analisis dibandingkan secara langsung dengan sesamanya sehingga menghasilkan nilai efisiensi teknis relative, mampu mengalisa slack input maupun output dan tidak memerlukan asumsi adanya

hubungan antara variable. Hasil dari penelitian ini menjelaskan bahwa petani responden di daerah penelitian memiliki rata-rata nilai efisiensi teknis sebesar 0.983 atau 98.3 persen, dengan nilai efisien terendah sebesar 0.801 atau 80.1 persen dan nilai efisien tertinggi sebesar 1,000 atau 100 persen dengan jumlah petani yang efisien yaitu sebanyak 25 petani.

Pada metode *Data Envelopment Analysis* (DEA) yang dapat melihat kecenderungan skala pengembalian usaha (*Return To Scale*) pada petani responden. Skala pengembalian usaha yang ada di daerah penelitian yaitu sebanyak 9 petani (20.45) berada pada kondisi *Decreasing Return to Scale* yaitu peningkatan *output* lebih kecil dari peningkatan *input*, 29 petani (65.91%) berada pada kondisi *Increasing Return to Scale* yaitu peningkatan *output* lebih besar daripada peningkatan *input* dan sebanyak 6 petani (13.64%) berada pada kondisi *Constant Return to Scale* yaitu peningkatan *output* dan *input* seimbang.

Berdasarkan hasil analisa tersebut, petani sebaliknya memperhatikan pengelolaan usahataninya khususnya pada penggunaan input produksi pupuk. Hasil analisa menunjukkan bahwa sebagian besar petani usahatani padi sawah berada pada posisi *Increasing Return To Scale* atau kondisi dimana penambahan 1 input produksi menyebabkan output meningkat lebih dari 1 unit. Sehingga petani dalam kondisi ini petani dapat menambah jumlah pupuk yang digunakan untuk meningkatkan produksi padi sebab penambahan penggunaan pupuk masih dapat meningkat.

Secara umum tujuan dari berusahatani adalah untuk memperoleh pendapatan. Besar kecilnya biaya produksi tentunya juga berdampak terhadap pendapatan yang diterima petani. Karena semakin besar biaya produksi yang

dikeluarkan maka semakin kecil pula pendapatan yang akan diterima petani. Pada daerah penelitian para usahatani padi sawah ditujukan sebagai pendapatan utama sehingga petani sangat mengharapkan pendapatan yang besar dari usaha tersebut agar dapat menopang kebutuhan hidupnya. Pendapatan digunakan para petani untuk memenuhi kebutuhan sehari-hari bagi keluarga serta untuk kegiatan diluar usahatani. Agar dapat menghasilkan pendaptan yang diinginkan para petani perlu dibekali dengan pendidikan dan pendampingan dalam melakukan usahatani agar dapat meningkatkan keterampilan dalam mengelola faktor-faktor pproduksi terutama input pupuk secara optimal. Kondisi sosial ekonomi petani juga berperang penting dalan usahatani yang dilakukan hal ini tercermin dari bagaimana kemampuan petani dalam mengalokasikan sumberdaya yang dimiliki dalam mengelola usahataninya secara efektif dan efisien.

Berdasarkan hasil penelitian diketahui bahwa penggunaan pupuk berpengaruh signifikan terhadap efisiensi teknis didaerah penelitian. Luas lahan berkaitan erat dengan penggunaan pupuk oleh petani dimana semakin luas lahan yang dimiliki petani maka pupuk yang diperlukan juga akan semakin banyak. Oleh karenanya petani perlu dibimbing untuk dapat menigkatkan penggunaan lahannya secara optimal. Hal tersebut ditujukan agar usahatani kelapa sawit didaerah penelitian memiliki keuntungan yang tinggi sehingga mampu meningkatkan kesejahteraan para petani padi sawah.

Penggunaan pupuk oleh petani di pengaruhi secara signifikan oleh harga pupuk sebab pada kenyataannya dilapangan petani memiliki keterbatasan biaya dalam pengelolaan usahataninya sehingga petani mempertimbangkan pembelian produk pupuk dedngan harga yang paling murah dengan kualitas yang realtif

atau menggunakan pupuk dibawah anjuran untuk menekan biaya produksi. Selain produk, harga dan distribusi, promosi oleh pihak pemasar sering mempengeruhi pengetahuan, persepsi dan sikap petani selain informasi dan penyuluh pertanian setempat. Sehingga peran serta pemerintah diperlukan untuk menstabilkan harga pupuk agar petani umum melakukan pemupukan yang sesuai guna meningkatkan produktivitas tanaman padi sawah di daerah penelitian.

Perilaku petani dalam penggunakan pupuk juga dapat dipengaruhi oleh lingkungan sosial budaya petani. Petani dapat memperoleh informasi teknologi produksi pertanian dari informasi formal dan informal. Sumber informasi formal diantaranya adalah dari peran penyuluhan pertanian lapangan. Pendampingan usahatani oleh penyuluhan pertanian sangat diperlukan, untuk meningkatkan pengetahuan terkait pengelolaan usahatani padi sawah yang lebih baik lagi melalui pemberianinformasi agar dapat merubah perilaku petani yang sebagian besar merupakan masyarakat perdesaan yang dalam berusaha tani secara umum masih didasarkan pada tradisi yang bersifat turun temurun, sehingga perubahaan pada petani sulit dilakukan karena pola pikir masyarakat (turutama generasi tua) masih didasarkan pada kebiasaan. Sehingga diharapkan dengan adanya peran penyuluh dapat memberikan ruang untuk memecahkan permasalahan dalam pengelolan usahatani padi sawah di daerah penelitian sehingga berguna untuk pengembangan usahatani padi sawah kedepannya.

V. KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil penelitian di Kcamatan Batang Asam Kabupaten Tanjung Jabung Barat, dapat ditarik kesimpulan:

- 2. Kegiatan usahatani padi sawah dilakukan pada lahan sebesar 1 hektar dengan penggunaan input berupa benih rata-rata sebesar 24-27 kg/ha, dengan rata-rata penggunaan pupuk organic 300 kg/ha, Pupuk Urea 150 kg/ha, Pupuk KCL 80 kg/ha, Pupuk Phonska 300 kg/ha, dengan penggunaan pestisida sebsar 600-800 ml/ha/MT dan tenaga kerja bekisaran 66-69 HOK.
- Secara keseluruhan bahwa usahatani padi sawah telah efisien secara teknis, sebanyak 40.91% petani belum efisien secara teknis dan 59.1% petani telah mencapai efisien secara teknis, dmana peluang peningkatan produktivitas sebesar 19.9%.

5.2 Saran

Adapun beberapa saran yang dapat menjadi pertimbangan terhadap penelitian ini adalah sebagai berikut:

- 1. Petani di daerah penelitian menggunakan bibit unggul yang telah berulang dan petani tidak jarang menaruk benih dengan cara menabur benih sehingga tidak jarang jarak tanam padi tidak diterperhatikan oleh petani.
- 2. Diperlukan suatu usaha dari petani untuk mempertahankan efisiensi usahatani padi sawah di daerah penelitian dengan cara tetap melakukan penggunaan pupuk dan kualitas tetap sama dan tidak berubah-ubah.

DAFTAR PUSTAKA

- BPS Kabupaten Tanjung Jabung Barat. 2022. *Kabupaten Tanjung Jabung Barat dalam Angka 2022*. Kabupaten Tanjung Jabung Barat. Tanjung Jabung Barat.
- BPS Provinsi Jambi. 2022. *Provinsi Jambi Dalam Angka 2022*. Provinsi Jambi. Jambi.
- Case & Fair.(2007). Prinsip-Prinsip Ekonomi. Jilid 1. Edisi 8. Jakarta: Erlangga.
- Coelli, T.J., D.S.P. Rao and G.E. Battese. (1998). *An Introduction to Efficiency and Productivity Analysis*. Boston: Kluwer-Nijhoff.
- Dinas Tanaman Pangan. 2022. *Dinas Tanaman Pangan dan Hortikultura*. Kabupaten Tanjung Jabung Barat.
- Farell MJ. 1957. The Measurement ff Productive Efficiency. *Journal of the Royal Statistical Society*. 120(3): 253 290.
- Hernanto, F. 1996 & 1989. *Ilmu Usahatani*. Penebar Swadaya. Jakarta.
- Ir. Agustina Shinta. 2011. Ilmu Usahatani. Universitas Brawijata Press. Malang.
- Kusnadi, N., Tinaprilla, N., Susilowati, S.H., Purwoto, A. 2011. Analisis Efisisensi Usahatani Padi di Indonesia. *Jurnal Agro Ekonomi*. Vol 29, No.1, Mei 2011. Pusat Sosial Ekonomi dan Kebijakan Pertanian. Kementerian Pertanian. Bogor.
- Kusumawati, Anna. 2021. Kesuburan Tanah dan Pemupukan (Cetakan Pertama). *Poltek LPP Press.* Yogyakarta.
- Maiangwa, M.G. Ogungbile, A.O., J.O. Olukosi & T.K. Atala (2007) *Adoption* of Chemical Fertilizer for Land Management in the North-West Zone of Nigeria. Tropical Agricultural Research & Extension 10: 33-46
- Mergono, A.N., Carolina, D.M., Yohanis, Y.M. 2021. *Pertumbuhan dan Hasil Tanaman Padi (Oryza sativa L.) pada Berbagai Sistem Tanam di Kampung Desay, Distrik Prafi, Kabupaten Manokwari*. Politeknik Pembangunan Pertanian Manokwari 31 juli 2021.
- Mubyarto 2002. Penganta Ekonomi Pertanian. *LP3ES*: Jakarta.

- Novizan 2002. Petunjuk Pemupukan yang Efektif. Jakarta: Agromedia Pusataka.
- Ridwan, A. 2009. *Rumus dan Data dalam Analysis Statistika untuk Penelitian*. Alfabeta. Bandung.
- Salvatore, Dominic. 2001. Teori Ekonomi Mikro (Edisi Kedua). Erlangga. Jakarta.
- Savran, Ferhan, Coskun Ceylan, & & Ozdal Koksal. (2010). The impact of socioeconomic characteristics and sources of information on using conservative agricultural methods. African Journal of Agricultural Research Vol. 5(9), pp. 813-817, 4 May, Diakses dari
 - http://www.academicjournals.org/AJAR (10 Oktober 2022)
- Siregar, Hadrian, 1981. *Budidaya Tanaman Padi di Indonesia*. Bogor : Sastra Hudaya.
- Soekartawi. 2002. *Prinsip Dasar Ekonomi Pertanian Teori dan Aplikasi*. Edisi revisi 2002. Rajawali Persada Jakarta.
- . 2016. Analisis Usahatani. Universitas Indonesia (UI-PRESS). Jakarta.
- Sugiyono. 2006. *Statistik untuk Penelitian* (E. Mulyatningsih, Ed:Edisi-10). Alfabeta.
- Suharta, N. Yatno, E. (2009). *Karakteristik Spodosols, Kendala dan Potensi Penggunaannya*. Jurnal: Sumberdaya Lahan. Vol.3 (1): 1-14.
- Sukrino, Sadono. 2005. *Mikro Ekonomi, Teori Pengantar*. PT. Raja Grafindo Persada. Jakarta.
- Suratiyah, Ken. 2015. Ilmu Usahatani. Penebar Swadaya. Jakarta.
- Taisa, R., Purba, T., Sakiah, Herawati, J., Junaedi, A. S., Junairiah, H. S. H., 2021. *Ilmu Kesuburan Tanah dan Pemupukan*. Yayasan Kita Menulis.
- Tarihora, Angel Santana. (2017). Analisis Efisiensi Pengunaan Pupuk Pada Tanaman Kubis (Brassica Oleracea L) Dengan PendekatanData Envelopment Analysis (DEA) (Studi Kasus: Desa Gajah, Kecamatan Simpang Empat, Kabupaten Karo). Medan: Universitas Sumatera Utara

LAMPIRAN

Lampiran 1. Kuisioner Penelitian

KUISIONER PENELITIAN

Judul : Analisis Efisiensi Teknis Penggunaan Pupuk Pada

Usahatani Padi Kecamatan Batang Asam Kabupaten

Tanjung Jabung Barat.

Peneliti : Cahaya Elisabeth Falensia Br. Naibaho

Nim : D1B019100

Fakultas / Jurusan : Pertanian / Agribisnis

Hari/ Tanggal

Nomor Sampel

1. Data lokasi Penelitian

Provinsi : Jambi

Kabupaten/Kota : Tanjung Jabung Barat

Kecamatan : Batang Asam

Kelurahan/Desa :

II. Identitas Responden

Nama :

Alamat	:	
Umur	:	Tahun
Jenis Kelamin	:	
Pendidikan Terakhir	:() Tidak Bersekolah () SD
	() SLTP () SLTA
Pekerjaan diluar Usahatani	:	
Pengalaman Bertani	:	Tahun
Nama Kelompok Tani	:	
Status Kelompok Tani	:() Aktif () Kurang Aktif () Tidak Aktif
III. Sumber Daya Lahan		
Luas Lahan	:	ha
Status Lahan	:() Milik Pribadi () Sewa
	() Penggarap () Lainnya
Jumlah Pokok	:	
Jarak Tanam	:	
Produksi	:	Kg/Ha/Tahun
IV. Penggunaan Pupuk Ole	eh Pe	etani
Penggunaan pupuk		

No	Jenis Pupuk	Jumlah	Harga Per	Keterangan
		Pupuk (Kg)	satuan	
1	Organik			
	- Pemupukan 1			
	- Pemupukan 2			
	- Pemupukan 3			
2	Urea			
	- Pemupukan 1			
	- Pemupukan 2			
	- Pemupukan 3			
3	SP36			
	- Pemupukan 1			
	- Pemupukan 2			
	- Pemupukan 3			
4	KCL			
	- Pemupukan 1			
	- Pemupukan 2			
	- Pemupukan 3			
5	Lainnya			
	-			

V. Produksi Penerimaan

No	Keterangan	Jumlah Kg	Harga per Kg	Jumlah (Rp)
1				
2				
3				
4				
5				

a. Hasil produksi digunakan untuk dijual atau konsumsi sendiri?

=

b. Jika hasil produksi digunakan untuk pangan sendiri, apakah hasil produksi yang dihasilkan mampu mencukupi kebutuhan pangan keluarga?

=

c. Jika hasil produksi dijual, kemana beras tersebut dijual?

=

d. Berapa harga jual tersebut ?

=

VI. Pengetahuan Petani

- a. Darimana Bapak/Ibu mendapatkan informasi mengenai usahatanai padi?
- b. Apa kendala yang dihadapi dalam kegiatan usahatani padi?
- c. Adakah peran pemerintah dalam membantu usahatani padi sawah yang Bapak/Ibu lakukan? Jika ada, seperti apa bentuk peran pemerintah tersebut?
- d. Apa usaha yang Bapak/Ibu lakukan agar hasil produksi padi tinggi?

Lampiran 2. Identitas Petani Responden Di Desa Rawa Medang Dan Desa Sri Agung 2023

No	Nama	Umur	Pengalaman	Status	Tingkat	Sumber	Tempat
Sampel		(Thn)	Usahatani (Thn)	Kelompok Tani	Pendidikan	Lahan	Jual
1	Muhidi	45	20	Aktif	SMP	Milik Sendiri	Tengkulak
2	Wiji	52	30	Aktif	SMP	Milik Sendiri	Tengkulak
3	Adi Susilo	40	25	Aktif	SMP	Milik Sendiri	Tengkulak
4	Sahudi Julianto	27	10	Aktif	SMA	Milik Sendiri	Penggiling
5	Sri dadi	51	35	Aktif	SMP	Milik Sendiri	Pabrik
6	Ngaidin	62	30	Aktif	SD	Milik Sendiri	Penangkar
7	Abu Salim	65	20	Aktif	SMP	Milik Sendiri	Penggiling
8	Sarmini	45	20	Aktif	SD	Milik Sendiri	Penggiling
9	Slamet Khamdani	63	17	Aktif	SD	Milik Sendiri	Penggiling
10	Alimah	45	32	Aktif	SD	Milik Sendiri	Tengkulak
11	Rudi Aripin	39	19	Aktif	SMP	Milik Sendiri	Tengkulak
12	Misiati	39	10	Aktif	SD	Milik Sendiri	Penggiling
13	Suswito	55	40	Aktif	SD	Milik Sendiri	Tengkulak
14	Ahmad Musli	76	25	Aktif	SD	Milik Sendiri	Pabrik
15	Abdul Hag	32	17	Aktif	SMP	Milik Sendiri	Tengkulak
16	Ngaidin	62	30	Aktif	SMP	Milik Sendiri	Penggiling
17	Agus Pronoto	45	20	Aktif	SMP	Milik Sendiri	Pabrik
18	Rudi Yanto	51	35	Aktif	SMA	Milik Sendiri	Tengkulak
19	Feni Irawanto	45	20	Aktif	SD	Milik Sendiri	Tengkulak
20	Siswanto	48	23	Aktif	SMP	Milik Sendiri	Tengkulak
21	Sustarno	52	36	Aktif	SD	Milik Sendiri	Tengkulak
22	Hardiyanto	45	20	Aktif	SMA	Milik Sendiri	Penggiling
23	Saman	56	41	Aktif	SD	Milik Sendiri	Tengkulak
24	Mulyani	52	36	Aktif	SMP	Milik Sendiri	Pabrik

Lampiran 2. Lanjutan

No Sampel	Nama	Umur (Thn)	Pengalaman Usahatani (Thn)	Status Kelompok Tani	Tingkat Pendidikan	Sumber Lahan	Tempat Jual
25	Suroso	48	33	Aktif	SD	Milik Sendiri	Tengkulak
26	Samson	48	33	Aktif	SD	Milik Sendiri	Tengkulak
27	Purwandi	48	33	Aktif	SMP	Milik Sendiri	Tengkulak
28	Gimin	52	37	Aktif	SMP	Milik Sendiri	Penggiling
29	Benyamin	46	31	Aktif	SMP	Milik Sendiri	Pabrik
30	Joko P	38	18	Aktif	SMP	Milik Sendiri	Penggiling
31	Imam Sujono	48	33	Aktif	SMP	Milik Sendiri	Tengkulak
32	Wariadi	55	35	Aktif	SMP	Milik Sendiri	Penggiling
33	Hendri	38	18	Aktif	SMA	Milik Sendiri	Penggiling
34	M. Hayun	65	32	Aktif	SMP	Milik Sendiri	Tengkulak
35	Iskandar	36	10	Aktif	SMP	Milik Sendiri	Tengkulak
36	Darsono	44	19	Aktif	SMP	Milik Sendiri	Penggiling
37	Warsito	58	42	Aktif	SMP	Milik Sendiri	Tengkulak
38	Taufik	43	25	Aktif	SMA	Milik Sendiri	Pabrik
39	Edi Pamuja	44	26	Aktif	SMA	Milik Sendiri	Tengkulak
40	Sungkono	63	48	Aktif	SD	Milik Sendiri	Penggiling
41	Miswanto	42	25	Aktif	SMP	Milik Sendiri	Pabrik
42	Kasih Riani	48	29	Aktif	SMP	Milik Sendiri	Tengkulak
43	Mu Heri	50	35	Aktif	SMP	Milik Sendiri	Tengkulak
44	Parmono	48	30	Aktif	SD	Milik Sendiri	Tengkulak

Lampiran 3. Luas Lahan, Status Kepemilikan Lahan, dan Produksi Padi Sawah di Daerah Penelitian 2023.

1 1,5 Milik Pribadi 25 5500 2 1 Milik Pribadi 25 4000 3 1,25 Milik Pribadi 28 8500 4 1 Milik Pribadi 20 4000 5 1,75 Milik Pribadi 40 7000 6 2 Milik Pribadi 40 8000 7 1 Milik Pribadi 40 8000 8 2 Milik Pribadi 40 8000 9 1,25 Milik Pribadi 30 8000 10 1,75 Milik Pribadi 30 8000 11 2 Milik Pribadi 30 8000 11 2 Milik Pribadi 30 8000 12 1 Milik Pribadi 35 8000 13 2 Milik Pribadi 35 8000 14 1 Milik Pribadi 30 8000 15 2 Milik Pribadi<	No	Luas Lahan (Ha)	Status Kepemilikan Lahan	Penggunaan Benih (Kg)	Produksi (Kg)
3 1,25 Milik Pribadi 28 8500 4 1 Milik Pribadi 20 4000 5 1,75 Milik Pribadi 20 4000 6 2 Milik Pribadi 40 8000 7 1 Milik Pribadi 25 5000 8 2 Milik Pribadi 40 8000 9 1,25 Milik Pribadi 30 5000 10 1,75 Milik Pribadi 40 7000 11 2 Milik Pribadi 30 8000 12 1 Milik Pribadi 35 8000 13 2 Milik Pribadi 35 8000 14 1 Milik Pribadi 30 8000 15 2 Milik Pribadi 30 8000 16 2 Milik Pribadi 30 8000 17 1 Milik Pribadi 25 4000 18 1,5 Milik Pribad	1	1,5	Milik Pribadi		
4 1 Milik Pribadi 20 4000 5 1,75 Milik Pribadi 40 7000 6 2 Milik Pribadi 40 8000 7 1 Milik Pribadi 25 5000 8 2 Milik Pribadi 40 8000 9 1,25 Milik Pribadi 30 5000 10 1,75 Milik Pribadi 30 8000 11 2 Milik Pribadi 30 8000 12 1 Milik Pribadi 25 4000 13 2 Milik Pribadi 25 4000 13 2 Milik Pribadi 20 5000 14 1 Milik Pribadi 20 5000 15 2 Milik Pribadi 30 8000 16 2 Milik Pribadi 25 4000 18 1,5 Milik Pribadi 25 4000 18 1,5 Milik Pribad	2	1	Milik Pribadi	25	4000
5 1,75 Milik Pribadi 40 7000 6 2 Milik Pribadi 40 8000 7 1 Milik Pribadi 25 5000 8 2 Milik Pribadi 40 8000 9 1,25 Milik Pribadi 30 5000 10 1,75 Milik Pribadi 40 7000 11 2 Milik Pribadi 30 8000 12 1 Milik Pribadi 25 4000 13 2 Milik Pribadi 20 5000 14 1 Milik Pribadi 20 5000 15 2 Milik Pribadi 30 8000 16 2 Milik Pribadi 25 400 17 1 Milik Pribadi 25 400 18 1,5 Milik Pribadi 25 400 19 1 Milik Pribadi 25 400 20 1 Milik Pribadi <td>3</td> <td>1,25</td> <td>Milik Pribadi</td> <td>28</td> <td>8500</td>	3	1,25	Milik Pribadi	28	8500
6 2 Milik Pribadi 40 8000 7 1 Milik Pribadi 25 5000 8 2 Milik Pribadi 40 8000 9 1,25 Milik Pribadi 30 5000 10 1,75 Milik Pribadi 40 7000 11 2 Milik Pribadi 30 8000 12 1 Milik Pribadi 25 4000 13 2 Milik Pribadi 25 4000 14 1 Milik Pribadi 20 5000 15 2 Milik Pribadi 30 8000 16 2 Milik Pribadi 30 8000 17 1 Milik Pribadi 25 4000 18 1,5 Milik Pribadi 25 4000 18 1,5 Milik Pribadi 25 4000 20 1 Milik Pribadi 27 4500 21 2 Milik Pribadi	4	1	Milik Pribadi	20	4000
7 1 Milik Pribadi 25 5000 8 2 Milik Pribadi 40 8000 9 1,25 Milik Pribadi 30 5000 10 1,75 Milik Pribadi 40 7000 11 2 Milik Pribadi 30 8000 12 1 Milik Pribadi 25 4000 13 2 Milik Pribadi 35 8000 14 1 Milik Pribadi 20 5000 15 2 Milik Pribadi 30 8000 16 2 Milik Pribadi 30 8000 17 1 Milik Pribadi 25 4000 18 1,5 Milik Pribadi 25 4000 18 1,5 Milik Pribadi 27 4500 20 1 Milik Pribadi 27 4500 21 2 Milik Pribadi 30 8000 22 1 Milik Pribad	5	1,75	Milik Pribadi	40	7000
8 2 Milik Pribadi 40 8000 9 1,25 Milik Pribadi 30 5000 10 1,75 Milik Pribadi 40 7000 11 2 Milik Pribadi 30 8000 12 1 Milik Pribadi 25 4000 13 2 Milik Pribadi 35 8000 14 1 Milik Pribadi 20 5000 15 2 Milik Pribadi 30 8000 16 2 Milik Pribadi 30 8000 17 1 Milik Pribadi 25 4000 18 1,5 Milik Pribadi 25 4000 19 1 Milik Pribadi 27 4500 20 1 Milik Pribadi 27 4500 21 2 Milik Pribadi 25 4000 22 1 Milik Pribadi 30 8500 24 2 Milik Pribadi	6	2	Milik Pribadi	40	8000
9 1,25 Milik Pribadi 30 5000 10 1,75 Milik Pribadi 40 7000 11 2 Milik Pribadi 30 8000 12 1 Milik Pribadi 25 4000 13 2 Milik Pribadi 35 8000 14 1 Milik Pribadi 20 5000 15 2 Milik Pribadi 30 8000 16 2 Milik Pribadi 30 8000 17 1 Milik Pribadi 25 4000 18 1,5 Milik Pribadi 25 4000 18 1,5 Milik Pribadi 25 4000 20 1 Milik Pribadi 25 4000 21 2 Milik Pribadi 27 4500 21 2 Milik Pribadi 25 400 23 2 Milik Pribadi 30 8500 24 2 Milik Priba	7	1	Milik Pribadi	25	5000
10 1,75 Milik Pribadi 40 7000 11 2 Milik Pribadi 30 8000 12 1 Milik Pribadi 25 4000 13 2 Milik Pribadi 35 8000 14 1 Milik Pribadi 20 5000 15 2 Milik Pribadi 30 8000 16 2 Milik Pribadi 30 8000 17 1 Milik Pribadi 25 4000 18 1,5 Milik Pribadi 25 4000 19 1 Milik Pribadi 25 4000 20 1 Milik Pribadi 27 4500 21 2 Milik Pribadi 30 8000 22 1 Milik Pribadi 30 8000 23 2 Milik Pribadi 30 8500 24 2 Milik Pribadi 30 8500 25 1,5 Milik Pribad	8	2	Milik Pribadi	40	8000
11 2 Milik Pribadi 30 8000 12 1 Milik Pribadi 25 4000 13 2 Milik Pribadi 35 8000 14 1 Milik Pribadi 20 5000 15 2 Milik Pribadi 30 8000 16 2 Milik Pribadi 30 8000 17 1 Milik Pribadi 25 4000 18 1,5 Milik Pribadi 25 4000 19 1 Milik Pribadi 25 4000 20 1 Milik Pribadi 27 4500 21 2 Milik Pribadi 30 8000 22 1 Milik Pribadi 25 4000 23 2 Milik Pribadi 30 8500 24 2 Milik Pribadi 30 8500 25 1,5 Milik Pribadi 25 4500 26 1 Milik Pribadi </td <td>9</td> <td>1,25</td> <td>Milik Pribadi</td> <td>30</td> <td>5000</td>	9	1,25	Milik Pribadi	30	5000
12 1 Milik Pribadi 25 4000 13 2 Milik Pribadi 35 8000 14 1 Milik Pribadi 20 5000 15 2 Milik Pribadi 30 8000 16 2 Milik Pribadi 30 8000 17 1 Milik Pribadi 25 4000 18 1,5 Milik Pribadi 40 7500 19 1 Milik Pribadi 25 4000 20 1 Milik Pribadi 27 4500 21 2 Milik Pribadi 30 8000 22 1 Milik Pribadi 25 4000 23 2 Milik Pribadi 30 8500 24 2 Milik Pribadi 30 8500 25 1,5 Milik Pribadi 30 6500 26 1 Milik Pribadi 25 4500 28 1 Milik Pribadi </td <td>10</td> <td>1,75</td> <td>Milik Pribadi</td> <td>40</td> <td>7000</td>	10	1,75	Milik Pribadi	40	7000
13 2 Milik Pribadi 35 8000 14 1 Milik Pribadi 20 5000 15 2 Milik Pribadi 30 8000 16 2 Milik Pribadi 30 8000 17 1 Milik Pribadi 25 4000 18 1,5 Milik Pribadi 40 7500 19 1 Milik Pribadi 25 4000 20 1 Milik Pribadi 27 4500 21 2 Milik Pribadi 30 8000 22 1 Milik Pribadi 25 4000 23 2 Milik Pribadi 30 8500 24 2 Milik Pribadi 30 8500 25 1,5 Milik Pribadi 30 6500 26 1 Milik Pribadi 21 4000 27 1 Milik Pribadi 25 4500 28 1 Milik Pribadi </td <td>11</td> <td>2</td> <td>Milik Pribadi</td> <td>30</td> <td>8000</td>	11	2	Milik Pribadi	30	8000
14 1 Milik Pribadi 20 5000 15 2 Milik Pribadi 30 8000 16 2 Milik Pribadi 30 8000 17 1 Milik Pribadi 25 4000 18 1,5 Milik Pribadi 25 4000 19 1 Milik Pribadi 25 4000 20 1 Milik Pribadi 27 4500 21 2 Milik Pribadi 30 8000 22 1 Milik Pribadi 25 4000 23 2 Milik Pribadi 30 8500 24 2 Milik Pribadi 30 8500 25 1,5 Milik Pribadi 30 6500 26 1 Milik Pribadi 25 4500 28 1 Milik Pribadi 25 4000 29 1,5 Milik Pribadi 30 6000 30 1,5 Milik Priba	12	1	Milik Pribadi	25	4000
15 2 Milik Pribadi 30 8000 16 2 Milik Pribadi 30 8000 17 1 Milik Pribadi 25 4000 18 1,5 Milik Pribadi 40 7500 19 1 Milik Pribadi 25 4000 20 1 Milik Pribadi 27 4500 21 2 Milik Pribadi 30 8000 21 2 Milik Pribadi 25 4000 22 1 Milik Pribadi 25 4000 23 2 Milik Pribadi 30 8500 24 2 Milik Pribadi 30 8500 25 1,5 Milik Pribadi 30 6500 26 1 Milik Pribadi 25 4500 28 1 Milik Pribadi 25 4000 29 1,5 Milik Pribadi 30 6000 30 1,5 Milik Priba	13	2	Milik Pribadi	35	8000
16 2 Milik Pribadi 30 8000 17 1 Milik Pribadi 25 4000 18 1,5 Milik Pribadi 40 7500 19 1 Milik Pribadi 25 4000 20 1 Milik Pribadi 27 4500 21 2 Milik Pribadi 30 8000 22 1 Milik Pribadi 25 4000 23 2 Milik Pribadi 40 8000 24 2 Milik Pribadi 30 8500 25 1,5 Milik Pribadi 30 6500 26 1 Milik Pribadi 21 4000 27 1 Milik Pribadi 25 4500 28 1 Milik Pribadi 30 6000 30 1,5 Milik Pribadi 30 6000 31 1 Milik Pribadi 25 4000 32 1,5 Milik Pribadi 30 6000 33 1 Milik Pribadi 30	14	1	Milik Pribadi	20	5000
17 1 Milik Pribadi 25 4000 18 1,5 Milik Pribadi 40 7500 19 1 Milik Pribadi 25 4000 20 1 Milik Pribadi 27 4500 21 2 Milik Pribadi 30 8000 22 1 Milik Pribadi 25 4000 23 2 Milik Pribadi 30 8500 24 2 Milik Pribadi 30 6500 25 1,5 Milik Pribadi 21 4000 26 1 Milik Pribadi 25 4500 28 1 Milik Pribadi 25 4500 29 1,5 Milik Pribadi 30 6000 30 1,5 Milik Pribadi 25 4000 31 1 Milik Pribadi 25 4000 32 1,5 Milik Pribadi 30 6000 33 1 Milik Pribadi 30 8500 34 2 Milik Pribadi 30 <td>15</td> <td>2</td> <td>Milik Pribadi</td> <td>30</td> <td>8000</td>	15	2	Milik Pribadi	30	8000
18 1,5 Milik Pribadi 40 7500 19 1 Milik Pribadi 25 4000 20 1 Milik Pribadi 27 4500 21 2 Milik Pribadi 30 8000 22 1 Milik Pribadi 25 4000 23 2 Milik Pribadi 30 8500 24 2 Milik Pribadi 30 6500 25 1,5 Milik Pribadi 21 4000 26 1 Milik Pribadi 25 4500 28 1 Milik Pribadi 25 4500 29 1,5 Milik Pribadi 30 6000 30 1,5 Milik Pribadi 25 4000 31 1 Milik Pribadi 25 4000 32 1,5 Milik Pribadi 30 6000 33 1 Milik Pribadi 30 8500 34 2 Milik Pribadi 30 8500 35 1 Milik Pribadi 30 <td>16</td> <td>2</td> <td>Milik Pribadi</td> <td>30</td> <td>8000</td>	16	2	Milik Pribadi	30	8000
19 1 Milik Pribadi 25 4000 20 1 Milik Pribadi 27 4500 21 2 Milik Pribadi 30 8000 22 1 Milik Pribadi 25 4000 23 2 Milik Pribadi 40 8000 24 2 Milik Pribadi 30 8500 25 1,5 Milik Pribadi 30 6500 26 1 Milik Pribadi 21 4000 27 1 Milik Pribadi 25 4500 28 1 Milik Pribadi 30 6000 30 1,5 Milik Pribadi 30 6000 30 1,5 Milik Pribadi 25 4000 32 1,5 Milik Pribadi 30 6000 33 1 Milik Pribadi 30 8500 34 2 Milik Pribadi 30 5000 35 1 Milik Pribadi 30 5000 36 1 Milik Pribadi 21	17	1	Milik Pribadi	25	4000
20 1 Milik Pribadi 27 4500 21 2 Milik Pribadi 30 8000 22 1 Milik Pribadi 25 4000 23 2 Milik Pribadi 40 8000 24 2 Milik Pribadi 30 8500 25 1,5 Milik Pribadi 30 6500 26 1 Milik Pribadi 21 4000 27 1 Milik Pribadi 25 4500 28 1 Milik Pribadi 25 4000 29 1,5 Milik Pribadi 30 6000 30 1,5 Milik Pribadi 40 6500 31 1 Milik Pribadi 25 4000 32 1,5 Milik Pribadi 30 6000 33 1 Milik Pribadi 30 8500 34 2 Milik Pribadi 30 8500 35 1 Milik Pribadi 30 5000 36 1 Milik Pribadi 21	18	1,5	Milik Pribadi	40	7500
21 2 Milik Pribadi 30 8000 22 1 Milik Pribadi 25 4000 23 2 Milik Pribadi 40 8000 24 2 Milik Pribadi 30 8500 25 1,5 Milik Pribadi 30 6500 26 1 Milik Pribadi 21 4000 27 1 Milik Pribadi 25 4500 28 1 Milik Pribadi 30 6000 30 1,5 Milik Pribadi 30 6000 31 1 Milik Pribadi 25 4000 32 1,5 Milik Pribadi 30 6000 33 1 Milik Pribadi 30 8500 34 2 Milik Pribadi 30 8500 35 1 Milik Pribadi 30 5000 36 1 Milik Pribadi 21 4500	19	1	Milik Pribadi	25	4000
22 1 Milik Pribadi 25 4000 23 2 Milik Pribadi 40 8000 24 2 Milik Pribadi 30 8500 25 1,5 Milik Pribadi 30 6500 26 1 Milik Pribadi 21 4000 27 1 Milik Pribadi 25 4500 28 1 Milik Pribadi 25 4000 29 1,5 Milik Pribadi 30 6000 30 1,5 Milik Pribadi 25 4000 31 1 Milik Pribadi 30 6000 32 1,5 Milik Pribadi 30 6000 33 1 Milik Pribadi 25 4000 34 2 Milik Pribadi 30 8500 35 1 Milik Pribadi 30 5000 36 1 Milik Pribadi 21 4500	20	1	Milik Pribadi	27	4500
23 2 Milik Pribadi 40 8000 24 2 Milik Pribadi 30 8500 25 1,5 Milik Pribadi 30 6500 26 1 Milik Pribadi 21 4000 27 1 Milik Pribadi 25 4500 28 1 Milik Pribadi 25 4000 29 1,5 Milik Pribadi 30 6000 30 1,5 Milik Pribadi 40 6500 31 1 Milik Pribadi 25 4000 32 1,5 Milik Pribadi 30 6000 33 1 Milik Pribadi 25 4000 34 2 Milik Pribadi 30 8500 35 1 Milik Pribadi 30 5000 36 1 Milik Pribadi 21 4500	21	2	Milik Pribadi	30	8000
24 2 Milik Pribadi 30 8500 25 1,5 Milik Pribadi 30 6500 26 1 Milik Pribadi 21 4000 27 1 Milik Pribadi 25 4500 28 1 Milik Pribadi 25 4000 29 1,5 Milik Pribadi 30 6000 30 1,5 Milik Pribadi 40 6500 31 1 Milik Pribadi 25 4000 32 1,5 Milik Pribadi 30 6000 33 1 Milik Pribadi 25 4000 34 2 Milik Pribadi 30 8500 35 1 Milik Pribadi 30 5000 36 1 Milik Pribadi 21 4500	22	1	Milik Pribadi	25	4000
25 1,5 Milik Pribadi 30 6500 26 1 Milik Pribadi 21 4000 27 1 Milik Pribadi 25 4500 28 1 Milik Pribadi 25 4000 29 1,5 Milik Pribadi 30 6000 30 1,5 Milik Pribadi 40 6500 31 1 Milik Pribadi 25 4000 32 1,5 Milik Pribadi 30 6000 33 1 Milik Pribadi 25 4000 34 2 Milik Pribadi 30 8500 35 1 Milik Pribadi 30 5000 36 1 Milik Pribadi 21 4500	23	2	Milik Pribadi	40	8000
26 1 Milik Pribadi 21 4000 27 1 Milik Pribadi 25 4500 28 1 Milik Pribadi 25 4000 29 1,5 Milik Pribadi 30 6000 30 1,5 Milik Pribadi 40 6500 31 1 Milik Pribadi 25 4000 32 1,5 Milik Pribadi 30 6000 33 1 Milik Pribadi 25 4000 34 2 Milik Pribadi 30 8500 35 1 Milik Pribadi 30 5000 36 1 Milik Pribadi 21 4500	24	2	Milik Pribadi	30	8500
27 1 Milik Pribadi 25 4500 28 1 Milik Pribadi 25 4000 29 1,5 Milik Pribadi 30 6000 30 1,5 Milik Pribadi 40 6500 31 1 Milik Pribadi 25 4000 32 1,5 Milik Pribadi 30 6000 33 1 Milik Pribadi 25 4000 34 2 Milik Pribadi 30 8500 35 1 Milik Pribadi 30 5000 36 1 Milik Pribadi 21 4500	25	1,5	Milik Pribadi	30	6500
28 1 Milik Pribadi 25 4000 29 1,5 Milik Pribadi 30 6000 30 1,5 Milik Pribadi 40 6500 31 1 Milik Pribadi 25 4000 32 1,5 Milik Pribadi 30 6000 33 1 Milik Pribadi 25 4000 34 2 Milik Pribadi 30 8500 35 1 Milik Pribadi 30 5000 36 1 Milik Pribadi 21 4500	26	1	Milik Pribadi	21	4000
29 1,5 Milik Pribadi 30 6000 30 1,5 Milik Pribadi 40 6500 31 1 Milik Pribadi 25 4000 32 1,5 Milik Pribadi 30 6000 33 1 Milik Pribadi 25 4000 34 2 Milik Pribadi 30 8500 35 1 Milik Pribadi 30 5000 36 1 Milik Pribadi 21 4500	27	1	Milik Pribadi	25	4500
29 1,5 Milik Pribadi 30 6000 30 1,5 Milik Pribadi 40 6500 31 1 Milik Pribadi 25 4000 32 1,5 Milik Pribadi 30 6000 33 1 Milik Pribadi 25 4000 34 2 Milik Pribadi 30 8500 35 1 Milik Pribadi 30 5000 36 1 Milik Pribadi 21 4500	28	1	Milik Pribadi	25	4000
30 1,5 Milik Pribadi 40 6500 31 1 Milik Pribadi 25 4000 32 1,5 Milik Pribadi 30 6000 33 1 Milik Pribadi 25 4000 34 2 Milik Pribadi 30 8500 35 1 Milik Pribadi 30 5000 36 1 Milik Pribadi 21 4500	29	1,5		30	6000
32 1,5 Milik Pribadi 30 6000 33 1 Milik Pribadi 25 4000 34 2 Milik Pribadi 30 8500 35 1 Milik Pribadi 30 5000 36 1 Milik Pribadi 21 4500	30	1,5	Milik Pribadi	40	6500
33 1 Milik Pribadi 25 4000 34 2 Milik Pribadi 30 8500 35 1 Milik Pribadi 30 5000 36 1 Milik Pribadi 21 4500	31		Milik Pribadi	25	4000
33 1 Milik Pribadi 25 4000 34 2 Milik Pribadi 30 8500 35 1 Milik Pribadi 30 5000 36 1 Milik Pribadi 21 4500		1,5			
34 2 Milik Pribadi 30 8500 35 1 Milik Pribadi 30 5000 36 1 Milik Pribadi 21 4500	33			25	4000
35 1 Milik Pribadi 30 5000 36 1 Milik Pribadi 21 4500	34	2			8500
36 1 Milik Pribadi 21 4500					
37 1 Milik Pribadi 20 4000	36	1		21	4500
	37	1	Milik Pribadi	20	4000

•	•	\sim	T .	
	ampiran	`~	Lan	nıtan
	amonan	J.	Lan	ıutan

38	1	Milik Pribadi	25	5500
39	1,5	Milik Pribadi	27	6000
40	2	Milik Pribadi	30	8500
41	1	Milik Pribadi	25	5000
42	1	Milik Pribadi	30	4000
43	1	Milik Pribadi	25	4000
44	1	Milik Pribadi	21	4500

Lampiran 4. Penggunaan Pupuk, dan Obat-Obatan di Daerah Penelitian Tahun 2023

No	Organik	Urea	KCL	Phonska	Pestisida
1	190	120	80	350	800
2	100	100	75	300	900
3	600	130	85	350	300
4	100	100	75	300	700
5	350	130	83	350	800
6	200	150	100	600	900
7	600	100	77	200	600
8	100	160	100	300	750
9	100	100	80	300	500
10	300	150	95	500	800
11	200	155	100	600	700
12	500	100	80	300	500
13	500	160	100	650	800
14	200	100	75	300	550
15	300	150	100	650	700
16	400	160	110	600	850
17	100	100	75	300	400
18	300	130	80	400	600
19	250	100	75	300	400
20	300	100	75	350	300
21	400	160	100	650	500
22	200	100	75	300	400
23	400	150	99	600	600
24	250	165	100	600	800
25	300	130	80	400	600
26	200	100	80	300	400
27	300	100	78	300	500
28	100	120	75	350	500
29	150	140	100	450	700
30	300	130	100	400	800
31	100	100	85	300	500
32	200	150	100	450	600
33	400	100	78	350	500
34	800	150	110	600	800
35	100	100	78	300	500
36	150	100	85	300	550
37	300	100	78	350	500

Lam	piran	4.	Lan	iutan

38	200	100	75	300	700	
39	400	130	80	400	800	
40	200	150	120	600	660	
41	150	100	80	300	600	
42	200	100	75	350	700	
43	100	150	75	300	550	
44	300	100	75	300	600	

Lampiran 5. Tenaga Kerja

No	Pengolahan Lahan (HOK)	Penyemaian dan Penanaman	Penyiangan (HOK)	Pemupukan (HOK)	Pengendalian Hama (HOK)	Panen (HOK)	Jumlah Tenaga Kerja
1	18	14	2	4	8	15	61
2	16	16	1	3	7	14	57
3	17	14	3	4	6	17	61
4	17	15	1	3	6	15	57
5	18	16	3	5	8	14	64
6	20	16	3	5	8	17	69
7	18	14	1	3	5	13	54
8	20	16	3	5	8	17	69
9	18	15	1	3	6	17	60
10	20	15	3	5	8	17	68
11	17	14	1	3	6	15	56
12	23	16	3	5	8	17	72
13	20	16	3	5	8	17	69
14	16	14	1	3	6	15	55
15	20	16	3	5	8	17	69
16	19	16	3	5	8	17	68
17	19	15	1	3	6	15	59
18	18	14	2	4	7	16	61
19	17	13	1	5	8	15	59
20	18	15	1	3	8	15	60
21	20	15	3	5	8	17	68

Lampiran 5 lanjutan.

No	Pengolahan Lahan (HOK)	Penyemaian dan Penanaman	Penyiangan (HOK)	Pemupukan (HOK)	Pengendalian Hama (HOK)	Panen (HOK)	Jumlah Tenaga Kerja
22	19	14	1	3	8	14	59
23	20	15	3	5	8	17	68
24	24	16	3	5	8	17	73
25	19	14	3	5	8	17	66
26	19	14	1	5	8	14	61
27	18	13	2	5	7	16	61
28	19	13	1	3	6	14	56
29	20	16	2	5	7	16	66
30	20	16	3	5	7	16	67
31	19	14	1	3	6	17	60
32	18	16	3	4	8	17	66
33	17	15	1	3	6	15	57
34	23	16	3	5	8	17	72
35	17	16	1	5	3	14	56
36	18	14	3	5	8	15	63
37	19	14	1	5	8	14	61
38	18	15	2	3	6	15	59
39	20	15	3	4	7	17	66
40	20	16	3	5	8	17	69
41	17	15	1	3	6	15	57
42	17	15	3	3	7	17	62
43	19	15	3	5	6	17	65
44	18	14	2	5	8	17	64

Lampiran 6 Hasil Analisa DEA Petani Responden yang Menjadi Banchmarking dalam Usahatani Padi Sawah di Daerah Penelitian Tahun 2023.

No	Pengunaan Pupuk Aktual			ual	Produksi		
Sampel	Organik	Urea	KCL	Phonska	Aktual (kg/ha/thn)	ET	RTS
1	190.000	90.000	80.000	300.000	5500	1	Crs
2	100.000	100.000	75.000	300.000	4000	1	Irs
3	600.000	130.00	85.000	350.000	8500	1	Crs
4	150.000	100.000	75.000	300.000	4000	1	Irs
5	350.000	130.000	80.000	300.000	7000	1	Irs
6	200.000	150.000	100.000	600.000	8000	0.985	Crs
7	600.000	100.000	77.000	200.000	5000	1	Irs
8	100.000	160.000	100.000	300.000	8000	1	Crs
9	100.000	100.000	78.000	300.000	5000	1	Irs
10	300.000	150.000	95.000	500.000	7000	0.843	Irs
11	197.000	148.000	98.000	403.000	8000	1	Crs
12	500.000	100.000	80.000	300.000	4000	0.963	Irs
13	500.000	160.000	100.000	650.000	8000	0.838	Drs
14	200.000	100.000	75.000	300.000	5000	1	Irs
15	300.000	150.000	100.000	650.000	8000	0.940	Drs
16	400.000	160.000	100.000	600.000	8000	0.872	Drs
17	100.000	100.000	75.000	300.000	4000	1	Irs
18	300.000	130.000	80.000	400.000	7500	1	Crs
19	250.000	100.000	75.000	300.000	4000	1	Irs
20	300.000	100.000	75.000	350.000	4500	1	Irs
21	400.000	160.000	100.000	650.000	8000	0.872	Drs
22	200.000	100.000	75.000	300.000	4000	1	Irs
23	400.000	150.000	99.000	600.000	8000	0.902	Drs
24	250.000	165.000	100.000	600.000	8500	1	Drs
25	300.000	130.000	80.000	400.000	6500	0.969	Irs
26	200.000	100.000	80.000	300.000	4000	0.963	Irs
27	300.000	100.000	78.000	300.000	4500	0.977	Irs
28	100.000	120.000	75.000	350.000	4000	1	Irs
29	150.000	140.000	100.000	450.000	6000	0.835	Irs
30	300.000	130.000	100.000	400.000	6500	0.838	Drs
31	100.000	100.000	85.000	300.000	4000	1	Irs
32	200.000	150.000	100.000	450.000	6000	0.801	Irs
33	400.000	100.000	78.000	350.000	4000	0.977	Irs
34	800.000	150.000	110.000	600.000	8500	0.867	Crs
35	100.000	100.000	78.000	300.000	5000	1	Irs
36	147.000	98.000	76.000	294.000	4500	1	Irs

37	300.000	100.000	78.000	350.000	4000	0.977	Irs
38	200.000	100.000	75.000	300.000	5500	1	Irs
39	400.000	130.000	80.000	400.000	6000	0.953	Irs
40	200.000	150.000	120.000	600.000	8500	1	Crs
41	147.000	98.000	78.000	294.000	5000	1	Irs
42	200.000	100.000	75.000	350.000	4000	1	Irs
43	100.000	150.000	75.000	300.000	5000	1	Irs
44	200.000	100.000	75.000	300.000	4500	1	Irs

Lampiran 7. Hasil Analisa DEA Efisiensi Teknis, Penggunaan Pupuk Aktual dan Estimasi Optimal Penggunaan Pupuk Per Petani

Instruction file = dt6-ins.txt Data file = dt6-dta.txt

Input orientated DEA

Scale assumption: VRS

Slacks calculated using multi-stage method

EFFICIENCY SUMMARY:

firm	crste	vrste	scale	
1	1.000	1.000	1.000	-
2	0.747	1.000	0.747	irs
3	1.000	1.000	1.000	-
4	0.712	1.000	0.712	irs
5	0.956	1.000	0.956	irs
6	0.985	0.985	1.000	-
7	0.955	1.000	0.955	irs
8	1.000	1.000	1.000	-
9	0.934	1.000	0.934	irs
10	0.824	0.843	0.978	irs
11	1.000	1.000	1.000	-
12	0.612	0.963	0.636	irs
13	0.832	0.838	0.993	drs
14	0.858	1.000	0.858	irs
15	0.932	0.940	0.991	drs
16	0.856	0.872	0.982	drs
17	0.747	1.000	0.747	irs
18	1.000	1.000	1.000	-
19	0.667	1.000	0.667	irs
20	0.728	1.000	0.728	irs
21	0.856	0.872	0.982	drs
22	0.686	1.000	0.686	irs
23	0.897	0.902	0.995	drs
24	0.971	1.000	0.971	drs
25	0.867	0.969	0.895	irs

26	0.678	0.963	0.705	irs
27	0.725	0.977	0.742	irs
28	0.654	1.000	0.654	irs
29	0.797	0.835	0.954	irs
30	0.837	0.838	0.999	drs
31	0.747	1.000	0.747	irs
32	0.739	0.801	0.923	irs
33	0.622	0.977	0.637	irs
34	0.867	0.867	1.000	-
35	0.934	1.000	0.934	irs
36	0.811	1.000	0.811	irs
37	0.643	0.977	0.658	irs
38	0.943	1.000	0.943	irs
39	0.780	0.953	0.819	irs
40	1.000	1.000	1.000	-
41	0.898	1.000	0.898	irs
42	0.683	1.000	0.683	irs
43	0.816	1.000	0.816	irs
44	0.772	1.000	0.772	irs
mean	0.831	0.963	0.866	

Note: crste = technical efficiency from CRS DEA vrste = technical efficiency from VRS DEA scale = scale efficiency = crste/vrste

Note also that all subsequent tables refer to VRS results

SUMMARY OF OUTPUT SLACKS:

firm	output:	1
1		0.000
2		0.000
3		0.000
4		0.000
5		0.000
6		0.000
7		0.000
8		0.000
9		0.000
10		0.000
11		0.000

12	770.059
13	0.000
14	0.000
15	0.000
16	0.000
17	0.000
18	0.000
19	0.000
20	0.000
21	0.000
22	0.000
23	0.000
24	0.000
25	0.000
26	770.059
27	50.238
28	0.000
29	0.000
30	0.000
31	0.000
32	0.000
33	542.969
34	0.000
35	0.000
36	0.000
37	542.969
38	0.000
39	0.000
40	0.000
41	0.000
42	0.000
43	0.000
44	0.000
mean	60.825

SUMMARY OF INPUT SLACKS:

firm input:	1	2	3	4
1	0.000	0.000	0.000	0.000
2	0.000	0.000	0.000	0.000
3	0.000	0.000	0.000	0.000

4	50.000	0.000	0.000	0.000
5	0.000	0.000	0.000	0.000
6	0.000	0.000	0.000	183.274
7	0.000	0.000	0.000	0.000
8	0.000	0.000	0.000	0.000
9	0.000	0.000	0.000	0.000
10	0.000	0.000	0.000	45.024
11	0.000	0.000	0.000	0.000
12	292.299	0.000	0.000	0.000
13	0.000	1.029	0.000	147.794
14	33.333	0.000	0.000	0.000
15	0.000	0.000	0.000	193.862
16	0.000	0.000	0.000	118.421
17	0.000	0.000	0.000	0.000
18	0.000	0.000	0.000	0.000
19	150.000	0.000	0.000	0.000
20	166.667	0.000	0.000	50.000
21	0.000	0.000	0.000	162.007
22	100.000	0.000	0.000	0.000
23	0.000	0.000	0.000	130.373
24	0.000	0.000	0.000	0.000
25	40.625	10.937	0.000	37.500
26	3.513	0.000	0.000	0.000
27	138.215	0.000	0.000	0.000
28	0.000	20.000	0.000	50.000
29	0.000	0.000	0.000	65.385
30	0.000	0.000	0.000	0.000
31	0.000	0.000	10.000	0.000
32	0.000	0.000	0.000	30.203
33	241.777	0.000	0.000	47.539
34	93.333	0.000	10.333	170.000
35	0.000	0.000	0.000	0.000
36	0.000	0.000	0.000	0.000
37	144.121	0.000	0.000	47.539
38	0.000	0.000	0.000	0.000
39	156.250	16.406	0.000	56.250
40	0.000	0.000	0.000	0.000
41	0.000	0.000	0.392	0.000
42	100.000	0.000	0.000	50.000
43	0.000	0.000	0.000	0.000
44	66.667	0.000	0.000	0.000

mean 40.382 1.099 0.462 36.027

SUMMARY OF PEERS:

firm	peers:				
1	1				
2	2				
3	3				
4	2				
5	5				
6	8	40	11	1	
7	7				
8	8				
9	9				
10	18	8	9	43	
11	11				
12	36	7	1		
13	24	3	18		
14	38	17			
15	11	40	3	18	
16	24	8	3	18	
17	2				
18	18				
19	2				
20	38	2			
21	24	8	3	18	
22	2				
23	11	40	3	18	
24	24				
25	38	18			
26	36	7	1		
27	7	1	36		
28	2	4.0			
29	8	18	9	1	4.0
30	11	3	1	40	18
31	2	40	10	0	
32	8	43	18	9	
33	36	1			
34	3				
35	9				
36	36	1			
37	36	1			

38	38	
39	18	38
40	40	
41	41	
42	2	
43	43	
44	38	2

SUMMARY OF PEER WEIGHTS:

(in same order as above)

firm	peer	weights:		
1	1.000	_		
2	1.000			
3	1.000			
4	1.000			
5	1000			
6	0.000	0.027	0.967	0.005
7	1.000			
8	1.000			
9	1.000			
10	0.764	0.030	0.171	0.035
11	1.000			
12	0.695	0.070	0.235	
13	0.088	0.412	0.500	
14	0.667	0.333		
15	0.484	0.114	0.114	0.258
16	0.158	0.132	0.276	0.434
17	1.000			
18	1.000			
19	1.000			
20	0.333	0.667		
21	0.158	0.132	0.276	0.434
22	1.000			
23	0.154	0.126	0.297	0.423
24	1.000			
25	0.500	0.500		
26	0.695	0.070	0.235	
27	0.013	0.044	0.943	
28	1.000			

29	0.238	0.105	0.610	0.047	
30	0.167	0.119	0.604	0.005	0.105
31	1.000				
32	0.083	0.122	0.301	0.495	
33	0.957	0.043			
34	1.000				
35	1.000				
36	1.000				
37	0.957	0.043			
38	1.000				
39	0.250	0.750			
40	1.000				
41	1.000				
42	1.000				
43	1.000				
44	0.333	0.667			

PEER COUNT SUMMARY:

(i.e., no. times each firm is a peer for another)

firm	peer	count:	
1	8		
2	9)	
3	7	,	
4	0)	
5	0)	
6	0)	
7	3	;	
8	6		
9	4		
10	0		
11	4		
12	0		
13	0		
14	0		
15	0		
16	0		
17	1		
18	11		
19	0		
20	0)	

21	0
22	0
23	0
24	3
25	0
26	0
27	0
28	0
29	0
30	0
31	0
32	0
33	0
34	0
35	0
36	5
37	0
38	5
39	0
40	4
41	0
42	0
43	2
44	0

SUMMARY OF OUTPUT TARGETS:

firm	output:	1
1		5500000
2		4000000
3		8500000
4		4000000
5		7000000
6		8000000
7		5000000
8		8000000
9		5000000
10		7000000
11		8000000
12		4770059
13		8000000

14	5000000
15	8000000
16	8000000
17	4000000
18	7500000
19	4000000
20	4500000
21	8000000
22	4000000
23	8000000
24	8500000
25	6500000
26	4770059
27	4550238
28	4000000
29	6000000
30	6500000
31	4000000
32	6000000
33	4542969
34	8500000
35	5000000
36	4500000
37	4542969
38	5500000
39	6000000
40	8500000
41	5000000
42	4000000
43	5000000
44	4500000

SUMMARY OF INPUT TARGETS:

firm	input:	1	2	3	4
1		190.000	90.000	80.000	300.000
2		100.000	100.000	75.000	300.000
3		600.000	130.000	85.000	350.000
4		100.000	100.000	75.000	300.000
5		350.000	130.000	80.000	300.000
6		196.996	147.747	98.498	407.712

98

7	600.000	100.000	77.000	200.000
8	100.000	160.000	100.000	300.000
9	100.000	100.000	78.000	300.000
10	252.878	126.439	80.078	376.439
11	197.000	148.000	98.000	403.000
12	189.012	96.262	77.010	289
13	419.118	133.088	83.824	397.059
14	166.667	100.000	75.000	300.000
15	281.977	140.988	93.992	417.088
16	348.684	139.474	87.171	404.605
17	100.000	100.000	75.000	300.000
18	300.000	130.000	80.000	400.000
19	100.000	100.000	75.000	300.000
20	133.333	100.000	75.000	300.000
21	348.684	139.474	87.171	404.605
22	100.000	100.000	75.000	300.000
23	360.759	135.285	89.288	419.766
24	250.000	165.000	100.000	600.000
25	250.000	115.000	77.500	350.000
26	189.012	96.262	77.010	288.787
27	154.815	97.677	76.188	293.030
28	100.000	100.000	75.000	300.000
29	125.303	116.950	83.536	310.525
30	251.450	108.962	83.817	335.267
31	100.000	100.000	75.000	300.000
32	160.116	120.087	80.058	330.058
33	148.848	97.656	76.172	294.258
34	600.000	130.000	85.000	350.000
35	100.000	100.000	78.000	300.000
36	147.000	98.000	76.000	294.000
37	148.848	97.656	76.172	294.258
38	200.000	100.000	75.000	300.000
39	225.000	107.500	76.250	325.000
40	200.000	150.000	120.000	600.000
41	147.000	98.000	78.000	294.000
42	100.000	100.000	75.000	300.000
43	100.000	150.000	75.000	300.000
44	133.333	100.000	75.000	300.000

FIRM BY FIRM RESULTS:

Results for firm: 1

Technical efficiency = 1.000

Scale efficiency = 1.000 (crs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	5.500.000	0.000	0.000	5.500.000
input	1	190.000	0.000	0.000	190.000
input	2	90.000	0.000	0.000	90.000
input	3	80.000	0.000	0.000	80.000
input	4	300.000	0.000	0.000	300.000

LISTING OF PEERS:

peer lambda weight 1 1.000

Results for firm: 2

Technical efficiency = 1.000

Scale efficiency = 0.747 (irs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	4.000.000	0.000	0.000	4.000.000
input	1	100.000	0.000	0.000	100.000
input	2	100.000	0.000	0.000	100.000
input	3	75.000	0.000	0.000	75.000
input	4	300.000	0.000	0.000	300.000

LISTING OF PEERS:

peer lambda weight 2 1.000

Results for firm: 3

Technical efficiency = 1.000

Scale efficiency = 1.000 (crs)

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	8.500.000	0.000	0.000	8.500.000
input	1	600.000	0.000	0.000	600.000

input	2	130.000	0.000	0.000	130.000
input	3	85.000	0.000	0.000	85.000
input	4	350.000	0.000	0.000	350.000

peer lambda weight 3 1.000

Results for firm: 4

Technical efficiency = 1.000

Scale efficiency = 0.712 (irs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	4.000.000	0.000	0.000	4.661.765
input	1	200.000	0.000	-50.000	100.000
input	2	100.000	0.000	0.000	100.000
input	3	80.000	0.000	0.000	75.000
input	4	300.000	0.000	0.000	300.000

LISTING OF PEERS:

peer lambda weight

2 1.000

Results for firm: 5

Technical efficiency = 1.000

Scale efficiency = 0.956 (irs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	7.000.000	0.000	0.000	7.000.000
input	1	350.000	0.000	0.000	350.000
input	2	130.000	0.000	0.000	130.000
input	3	80.000	0.000	0.000	80.000
input	4	300.000	0.000	0.000	300.000

LISTING OF PEERS:

peer lambda weight

5 1.000

Results for firm: 6

Technical efficiency = 0.985

Scale efficiency = 1.000 (crs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	8.000.000	0.000	0.000	8.000.000
input	1	200.000	-3.004	0.000	196.996
input	2	150.000	-2.253	0.000	147.747
input	3	100.000	-1.502	0.000	98.498
input	4	600.000	-9.013	-183.274	407.712

LISTING OF PEERS:

peer	lambda weight
8	0.000
40	0.027
11	0.967
1	0.005

Results for firm: 7

Technical efficiency = 1.000

Scale efficiency = 0.955 (irs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	5.000.000	0.000	0.000	5.000.000
input	1	600.000	0.000	0.000	600.000
input	2	100.000	0.000	0.000	100.000
input	3	77.000	0.000	0.000	77.000
input	4	200.000	0.000	0.000	200.000

LISTING OF PEERS:

peer lambda weight 7 1.000

Results for firm: 8

Technical efficiency = 1.000

Scale efficiency = 1.000 (crs)

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	8.000.000	0.000	0.000	8.000.000
input	1	100.000	0.000	0.000	100.000
input	2	160.000	0.000	0.000	160.000

input	3	100.000	0.000	0.000	100.000
input	4	300.000	0.000	0.000	300.000

peer lambda weight 8 1.000

Results for firm: 9

Technical efficiency = 1.000

Scale efficiency = 0.934 (irs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	5.000.000	0.000	0.000	5.000.000
input	1	100.000	0.000	0.000	100.000
input	2	100.000	0.000	0.000	100.000
input	3	78.000	0.000	0.000	78.000
input	4	300.000	0.000	0.000	300.000

LISTING OF PEERS:

peer lambda weight 9 1.000

Results for firm: 10 Technical efficiency = 0.843

Scale efficiency = 0.978 (irs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	7.000.000	0.000	0.000	7.000.000
input	1	300.000	-47.122	0.000	252.878
input	2	150.000	-23.561	0.000	126.439
input	3	95.000	-14.922	0.000	80.078
input	4	500.000	-78.537	-45.024	376.439

LISTING OF PEERS:

peer	lambda weight
18	0.764
8	0.030
9	0.171
43	0.035

Results for firm: 11 Technical efficiency = 1.000

Scale efficiency = 1.000 (crs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	8.000.000	0.000	0.000	8.000.000
input	1	197.000	0.000	0.000	197.000
input	2	148.000	0.000	0.000	148.000
input	3	98.000	0.000	0.000	98.000
input	4	403.000	0.000	0.000	403.000

LISTING OF PEERS:

peer lambda weight

1.000

Results for firm: 12 Technical efficiency = 0.963

Scale efficiency = 0.636 (irs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	4.000.000	0.000	770.059	4.770.059
input	1	500.000	-18.689	-292.299	189.012
input	2	100.000	-3.738	0.000	96.262
input	3	80.000	-2.990	0.000	77.010
input	4	300.000	-11.213	0.000	288.787

LISTING OF PEERS:

peer	lambda weight
36	0.695
7	0.070
1	0.235

Results for firm: 13 Technical efficiency = 0.838

Scale efficiency = 0.993 (drs)

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	8.000.000	0.000	0.000	8.000.000
input	1	500.000	-80.882	0.000	419.118

input	2	160.000	-25.882	-1.029	133.088
input	3	100.000	-16.176	0.000	83.824
input	4	650.000	-105.147	-147.794	397.059

peer	lambda weigh
24	0.088
3	0.412
18	0.500

Results for firm: 14 Technical efficiency = 1.000

Scale efficiency = 0.858 (irs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	5.000.000	0.000	0.000	5.000.000
input	1	200.000	0.000	-33.333	166.667
input	2	100.000	0.000	0.000	100.000
input	3	75.000	0.000	0.000	75.000
input	4	300.000	0.000	0.000	300.000

LISTING OF

PEERS:

peer lambda weight 38 0.667 17 0.333

Results for firm: 15

 $Technical\ efficiency = 0.940$

Scale efficiency = 0.991 (drs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	8.000.000	0.000	0.000	8.000.000
input	1	300.000	-18.023	0.000	281.977
input	2	150.000	-9.012	0.000	140.988
input	3	100.000	-6.008	0.000	93.992
input	4	650.000	-39.050	-193.862	417.088

LISTING OF PEERS:

peer lambda weight

11 0.484

40 0.114 3 0.144 18 0.258

Results for firm: 16
Technical efficiency = 0.872

Scale efficiency = 0.982 (drs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	8.000.000	0.000	0.000	8.000.000
input	1	400.000	-51.316	0.000	348.684
input	2	160.000	-20.526	0.000	139.474
input	3	100.000	-12.829	0.000	87.171
input	4	600.000	-76.974	-118.421	404.605

LISTING OF PEERS:

peer	lambda weight
24	0.158
8	0.132
3	0.276
18	0.434

Results for firm: 17
Technical efficiency = 1.000
Scale efficiency = 0.747 (irs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	4.000.000	0.000	0.000	4.000.000
input	1	100.000	0.000	0.000	100.000
input	2	100.000	0.000	0.000	100.000
input	3	75.000	0.000	0.000	75.000
input	4	300.000	0.000	0.000	300.000

LISTING OF

PEERS:

peer lambda weight 2 1.000

Results for firm: 18

Technical efficiency = 1.000

Scale efficiency = 1.000 (irs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	7.500.000	0.000	0.000	7.500.000
input	1	300.000	0.000	0.000	300.000
input	2	130.000	0.000	0.000	130.000
input	3	80.000	0.000	0.000	80.000
input	4	400.000	0.000	0.000	400.000

LISTING OF PEERS:

peer lambda weight

18 1.000

Results for firm: 19 Technical efficiency = 1.000

Scale efficiency = 0.667 (irs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	4.000.000	0.000	0.000	4.000.000
input	1	250.000	0.000	-150.000	100.000
input	2	100.000	0.000	0.000	100.000
input	3	75.000	0.000	0.000	75.000
input	4	300.000	0.000	0.000	300.000
LICTING ()E				

LISTING OF

PEERS:

peer lambda weight 2 1.000

Results for firm: 20

Technical efficiency = 1.000

Scale efficiency = 0.728 (irs)

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	4.500.000	0.000	0.000	4.500.000
input	1	300.000	0.000	-166.667	133.333
input	2	100.000	0.000	0.000	100.000
input	3	75.000	0.000	0.000	75.000

input 4 350.000 0.000 -50.000 300.000

LISTING OF

PEERS:

peer lambda weight 38 0.333 2 0.667

Results for firm: 21 Technical efficiency = 0.872

Scale efficiency = 0.982 (drs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	8.000.000	0.000	0.000	8.000.000
input	1	400.000	-51.316	0.000	348.684
input	2	160.000	-20.526	0.000	139.474
input	3	100.000	-12.829	0.000	87.171
input	4	650.000	-83.388	-162.007	404.605

LISTING OF PEERS:

peer	lambda weight
24	0.158
8	0.132
3	0.276
18	0.434

Results for firm: 22 Technical efficiency =1.000

Scale efficiency = 0.686 (irs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	4.000.000	0.000	0.000	4.000.000
input	1	200.000	0.000	-100.000	100.000
input	2	100.000	0.000	0.000	100.000
input	3	75.000	0.000	0.000	75.000
input	4	300.000	0.000	0.000	300.000

LISTING OF PEERS:

peer lambda weight

2 1.000

Results for firm: 23 Technical efficiency = 0.902

Scale efficiency = 0.995 (drs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	8.000.000	0.000	0.000	8.000.000
input	1	400.000	-39.241	0.000	360.759
input	2	150.000	-14.715	0.000	135.285
input	3	99.000	-9.712	0.000	89.288
input	4	600.000	-58.861	-130.373	410.766

LISTING OF PEERS:

peer	lambda weight
11	0.154
40	0.126
3	0.297
18	0.423

Results for firm: 24

Technical efficiency = 1.000

Scale efficiency = 0.971 (drs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	8.500.000	0.000	0.000	8.500.000
input	1	250.000	0.000	0.000	250.000
input	2	165.000	0.000	0.000	165.000
input	3	100.000	0.000	0.000	100.000
input	4	600.000	0.000	0.000	600.000

LISTING OF PEERS:

peer lambda weight

24 1.000

Results for firm: 25 Technical efficiency = 0.969 Scale efficiency = 0.895 (irs)

PROJECTION SUMMARY:

variable original radial slack projected value movement moveament value

output	1	6.500.000	0.000	0.000	6.500.000
input	1	300.000	-9.375	-40.625	250.000
input	2	130.000	-4.063	-10.937	115.000
input	3	80.000	-2.500	0.000	77.500
input	4	400.000	-12.500	-37.500	350.000

peer lambda weight 38 0.500 18 0.500

Results for firm: 26Technical efficiency = 0.963Scale efficiency = 0.705 (irs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	4.000.000	0.000	770.059	4.770.059
input	1	200.000	-7.476	-3.513	189.012
input	2	100.000	-3.738	0.000	96.262
input	3	80.000	-2.990	0.000	77.010
input	4	300.000	-11.213	0.000	288.787

LISTING OF PEERS:

peer lambda weight 36 0.695 7 0.070 1 0.235

Results for firm: 27
Technical efficiency = 0.977
Scale efficiency = 0.742 (irs)
PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	4.500.000	0.000	50.000	4.550.238
input	1	300.000	-6.790	-138.215	154.815
input	2	100.000	-2.323	0.000	97.677
input	3	78.000	-1.812	0.000	76.188
input	4	300.000	-6.970	0.000	293.030

LISTING OF PEERS:

peer lambda weight

7 0.013 1 0.044 36 0.943

Results for firm: 28Technical efficiency = 1.000Scale efficiency = 0.654 (irs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	4.000.000	0.000	0.000	4.000.000
input	1	100.000	0.000	0.000	100.000
input	2	120.000	0.000	-20.000	100.000
input	3	75.000	0.000	0.000	75.000
input	4	350.000	0.000	-50.000	300.000

LISTING OF PEERS:

peer lambda weight 2 1.000

Results for firm: 29
Technical efficiency = 0.835
Scale efficiency = 0.954 (irs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	6.000.000	0.000	0.000	6.000.000
input	1	150.000	-24.697	0.000	125.303
input	2	140.000	-23.050	0.000	116.950
input	3	100.000	-16.464	0.000	83.536
input	4	450.000	-74.090	-65.385	310.525

LISTING OF PEERS:

peer	lambda weight
8	0.238
18	0.105
9	0.610
1	0.064

Results for firm: 30 Technical efficiency = 0.838 Scale efficiency = 0.998 (drs) PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	6.500.000	0.000	0.000	6.000.000
input	1	300.000	-48.550	0.000	251.450
input	2	130.000	-21.038	0.000	108.962
input	3	100.000	-16.183	0.000	83.817
input	4	400.000	-64.733	0.000	335.267

LISTING OF PEERS:

peer	lambda weight
11	0.167
3	0.119
1	0.604
40	0.005
18	0.105

Results for firm: 31 Technical efficiency = 1.000 Scale efficiency = 0.747 (irs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	4.000.000	0.000	0.000	4.000.000
input	1	100.000	0.000	0.000	100.000
input	2	100.000	0.000	0.000	100.000
input	3	85.000	0.000	-10.000	75.000
input	4	300.000	0.000	0.000	300.000

LISTING OF PEERS:

peer lambda weight 2 1.000

Results for firm: 32 Technical efficiency = 0.801 Scale efficiency = 0.923 (irs) PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	6.000.000	0.000	0.000	6.000.000
input	1	200.000	-39.884	0.000	160.116

input	2	150.000	-29.913	0.000	120.087
input	3	100.000	-19.942	0.000	80.058
input	4	450.000	-89.739	-30.203	330.058

peer	lambda weight
8	0.083
43	0.122
18	0.301
9	0.495

Results for firm: 33 Technical efficiency = 0.977

Scale efficiency = 0.637 (irs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	4.000.000	0.000	542.969	4.542.969
input	1	400.000	-9.375	-241.777	148.848
input	2	100.000	-2.344	0.000	97.656
input	3	78.000	-1.828	0.000	76.172
input	4	350.000	-8.203	-47.539	294.258

LISTING OF PEERS:

peer lambda weight 36 0.957 1 0.043

Results for firm: 34 Technical efficiency = 0.867

Scale efficiency = 1.000 (crs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	8.500.000	0.000	0.000	8.500.000
input	1	800.000	-106.667	-93.333	600.00
input	2	150.000	-20.000	0.000	130.000
input	3	110.000	-14.667	-10.333	85.000
input	4	600.000	-80.000	-170.000	350.000

LISTING OF PEERS:

peer lambda weight 3 1.000

Results for firm: 35 Technical efficiency = 1.000 Scale efficiency = 0.934 (irs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	5.000.000	0.000	0.000	5.000.000
input	1	100.000	0.000	0.000	100.000
input	2	100.000	0.000	0.000	100.000
input	3	78.000	0.000	0.000	78.000
input	4	300.000	0.000	0.000	300.000

LISTING OF PEERS:

peer lambda weight 9 1.000

Results for firm: 36 Technical efficiency = 1.000 Scale efficiency = 0.811 (irs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	4.500.000	0.000	0.000	4.500.000
input	1	147.000	0.000	0.000	147.000
input	2	98.000	0.000	0.000	98.000
input	3	76.000	0.000	0.000	76.000
input	4	294.000	0.000	0.000	294.000

LISTING OF PEERS:

peer lambda weight 36 1.000

Results for firm: 37
Technical efficiency = 0.977
Scale efficiency = 0.658 (irs)
PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	4.000.000	0.000	542.969	4.542.969
input	1	300.000	-7.031	-144.121	148.848

input	2	100.000	-2.344	0.000	97.656
input	3	78.000	-1.828	0.000	76.172
input	4	350.000	-8.203	-47.539	294.258

peer lambda weight 36 0.957 1 0.043

Results for firm: 38 Technical efficiency = 1.000

Scale efficiency = 0.943 (irs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	5.500.000	0.000	0.000	5.500.000
input	1	200.000	0.000	0.000	200.000
input	2	100.000	0.000	0.000	100.000
input	3	75.000	0.000	0.000	75.000
input	4	300.000	0.000	0.000	300.000

LISTING OF PEERS:

peer lambda weight 38 1.000

Results for firm: 39 Technical efficiency = 0.953

Scale efficiency = 0.819 (irs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	6.000.000	0.000	0.000	6.000.000
input	1	400.000	-18.750	-156.250	225.000
input	2	130.000	-6.094	-16.406	107.500
input	3	80.000	-3.750	0.000	76.250
input	4	400.000	-18.750	-56.250	325.000

LISTING OF PEERS:

peer lambda weight 18 0.250 38 0.750 Results for firm: 40 Technical efficiency = 1.000

Scale efficiency = 1.000 (crs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	8.500.000	0.000	0.000	8.500.000
input	1	200.000	0.000	0.000	200.000
input	2	150.000	0.000	0.000	150.000
input	3	120.000	0.000	0.000	120.000
input	4	600.000	0.000	0.000	600.000

LISTING OF PEERS:

peer lambda weight 40 1.000

Results for firm: 41 Technical efficiency = 1.000

Scale efficiency = 0.898 (irs)

PROJECTION SUMMARY:

	original	radial	slack	projected
	value	movement	moveament	value
1	5.000.000	0.000	0.000	5.000.000
1	147.000	0.000	0.000	147.000
2	98.000	0.000	0.000	98.000
3	78.000	0.000	0.000	78.000
4	294.000	0.000	0.000	294.000
	3	value 1 5.000.000 1 147.000 2 98.000 3 78.000	value movement 1 5.000.000 0.000 1 147.000 0.000 2 98.000 0.000 3 78.000 0.000	value movement movement 1 5.000.000 0.000 0.000 1 147.000 0.000 0.000 2 98.000 0.000 0.000 3 78.000 0.000 0.000

LISTING OF PEERS:

peer lambda weight 41 1.000

Results for firm: 42 Technical efficiency = 1.000

Scale efficiency = 0.683 (irs)

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	4.000.000	0.000	0.000	4.000.000
input	1	200.000	0.000	-100.000	100.000
input	2	100.000	0.000	0.000	100.000
input	3	75.000	0.000	0.000	75.000

input 4 350.000 0.000 -50.000 300.000

LISTING OF PEERS:
peer lambda weight
2 1.000

Results for firm: 43 Technical efficiency = 1.000

Scale efficiency = 0.816 (irs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	5.000.000	0.000	0.000	5.000.000
input	1	100.000	0.000	0.000	100.000
input	2	150.000	0.000	0.000	150.000
input	3	75.000	0.000	0.000	75.000
input	4	300.000	0.000	0.000	300.000

LISTING OF PEERS:

peer lambda weight 43 1.000

Results for firm: 44Technical efficiency = 1.000Scale efficiency = 0.772 (irs)

PROJECTION SUMMARY:

variable		original	radial	slack	projected
		value	movement	moveament	value
output	1	4.500.000	0.000	0.000	4.500.000
input	1	200.000	0.000	-66.667	133.333
input	2	100.000	0.000	0.000	100.000
input	3	75.000	0.000	0.000	75.000
input	4	300.000	0.000	0.000	300.000

LISTING OF PEERS:

peer lambda weight 38 0.33 2 0.667

Lampiran 7. Dokumentasi Penelitian

