

JURNAL MANAJEMEN TRANSPORTASI

er. benny lenning

VOLUME VIII

NO. 01

2007

Pengkajian Kehadiran dan Perkembangan Perusahaan Penerbangan Berbasis Biaya Rendah	
1 COL di Naccia China	1 - 8
Idjon Sudjone	
Kajian Pelayanan Angkutan Laut Daerah Terpencil Kabupaten Natuna Propinsi Riau	0 00
W. Nikson S	9 - 23
Model Transportasi Pendistribusian Pupuk di Propinsi Jambi	
Edison, Denny Denmar dan Adenan Suhalis	25 - 32
Pengaruh Sistem Busway Koridor il terhadap Intensitas Kendaraan Pribadi di Sekitar Jalur	
Rus Kota Jurusan Pulo Gadung - Senen - Harmoni Tahun 2006	00 40
Zaini Noer	33 - 43
Underdog Advantage : Alternative Competitive Advantage Strategi bayi Perusahaan	
Dongengkuten	45 50
Abdullah Muhammad	45 - 59
Pengaruh Konvensi Internasional terhadap Hukum Positif Indonesia dan Operator Multimoda	
di Indonosia	64 7
Chandra Motik Yusuf Djemat	61 - 73
Mengukur Kinerja Perusahaan Penerbangan dengan Sistem Balanced Scorecard	
Chalid M. Zein	75 - 82

JURNAL ILMIAH TERAKREDITASI SK. DIRJEN DIKTI DEPDIKNAS No. 52/DIKTI/KEP. 2002 tgl. 12 NOVEMBER 2002

Diterbitkan Oleh:

SEKOLAH TINGGI MANAJEMEN TRANSPOR TRISAKTI JL. IPN NO.2 CIPINANG BESAR SELATAN (KEBON NANAS) JAKARTA TIMUR TELP. (021) 8516050, 8569350, FAX. (021) 8569340 E-MAIL : jurnalmjntransportasi@yahoo.com

DAFTAR ISI

JURNAL

MANAJEMEN TRANSPORTASI

Jurnal Ilmiah Terakreditasi SK. Dirjen Depdiknas No. 52/DIKTI/KEP.2002 tgl. 12 NOVEMBER 2002

VOL. VIII	NO. 01	2007	ISSN 1411 - 2	2655
Sekapur Sirih				i
Daftar Isi				ii
(LCC) di Negara China		sahaan Penerbangan Berba		1 - 8
Kajian Pelayanan Angk W. Nikson S	kutan Laut Daerah Terp	encil Kabupaten Natuna Pr	opinsi Riau	9 - 23
Model Transportasi Per Edison, Denny I	ndistribusian Pupuk di ! Denmar dan Adenan Su	Propinsi Jambi Ihalis		25 - 32
Dua Kata Junican Pula	Gadung - Senen - Hai	Intensitas Kendaraan Pribad moni Tahuก 2006		33 - 43
Demonstration		e Advantage Strategi bagi F		45 - 59
		kum Positif Indonesia dan Op		61 - 73
Mengukur Kinerja Per Chalid M. Zein	usahaan Penerbangan	dengan Sistem Balanced S	corecard	75 - 82

Model Transportasi Pendistribusian Pupuk di Propinsi Jambi

Edison*, Denny Denmar* dan Adenan Suhalis**

- Dosen Fakultas Pertanian Universitas Jambi
- ** Dosen Sekolah Tinggi Manajemen Transpor Trisakti

ABSTRACT

The objective of this research is to know the transportation model of fertilizer distribution in Jambi Province. Research was conducted in Jambi Province in 2005. Linier Programming analysis was used to evaluate that model by applying transportation model. The research result shows that the pattern of transportation model applying of PT PUSRI had shown the appropriate alternative model. Meanwhile, it needs an adjusting action to decrease transportation cost in order to reach the optimal condition. In Economic Order Quantity subsystem, it indicates rather higher from optimal level, and also, in Inventory Turnover subsystem, it indicates rather lower.

Keywords: Transportation Model, Fertilizer Distribution and Jambi Province.

Jurnal Manajemen Transportasi Sekolah Tinggi Manajemen Transpor Trisakti Jurnal Ilmiah Terakreditasi SK. Dirjen Dikti Depdiknas No. 52/Dikti/Kep.2002 tgl. 12 November 2002

PENDAHULUAN

Sejalan dengan berkurangnya subsidi pupuk, efektivitas penggunaannya juga perlu ditingkatkan melalui pendistribusian agar keberadaannya ditingkat petani pada kondisi tepat waktu, bentuk, jumlah, tempat, dan mutu. Kegagalan dalam pelayanan berakibat sangat berkurangnya hasil pertanian dan bahkan bisa menggagalkannya. Selain itu dengan semakin berkurangnya campur tangan pemerintah dalam tata niaga pupuk, apabila tidak diimbangi dengan model transportasi distribusi fisik dan mengingat bisnis pemasaran pupuk menarik di antara sesama produsen pupuk dikhawatirkan akan meningkatkan harga ditingkat petani.

Model distribusi yang baik memberikan kegunaan waktu, kegunaan tempat dan kegunaan kepemilikan. Produk ini tidak mencapai tujuan jika model transportasi yang baik tidak bisa ditemukan, dimana konsumen tidak dapat memperoleh pupuk pada waktu dan tempat dimana produk ini dibutuhkan. Pada prinsipnya produsen (perusahaan) yang memproduksi pupuk mempunyai tujuan yaitu untuk mengantarkan produknya kepasar atau konsumen. Jadi untuk sampai pada konsumen setelah suatu barang selesai diproduksi

diperlukan model transportasi pendistribusian secara fisik bagi barang tersebut

Suatu model transportasi pendistribusian yang dioperasikan secara baik selain merupakan keuntungan bagi setiap perusahaan yang menjadi bagian sistem distribusi itu juga memberikan keuntungan bagi konsumen. Jadi model ini merupakan kunci tercapainya pelayanan kepada konsumen (petani) secara baik serta meningkatkan efisiensi dan efektivitas pemasaran.

Penelitian dilaksanakan di PT PUSRI Palembang dan PT PUSRI KPW Jambi. Penelitian ini terutama untuk melihat model transportasi distribusi pupuk yaitu pengangkutan pupuk (Urea, TSP, SP-36, ZA, dan KC!) dan pengendalian persediaan pupuk (Economic Order Quantity) dan Inventory Turnover di gudang penyimpanan pupuk di Propinsi Jambi.

Dalam melihat model transportasi distribusi pupuk tersebut, fungsi tujuan dan fungsi pembatasnya terlihat sebagai berikut:

1) meminimumkan
$$Z = \sum_{ij} X_{ij}$$

2) pembatas (a)
$$\sum X_{ij} < Si$$

(b)
$$\sum X_{ij} < D_{ij}$$

(c)
$$\sum X_{ij}^3 < W_j$$

(d)
$$\sum X_{ij}^{y} > 0$$

(e)
$$X_{ij} > 0$$
 $i = 1, 2, 3, ...$

$$j = 1, 2, 3, ...$$

Dimana:

C_{ij} = biaya pengangkutan pupuk dari gudang sumber (Lini II) ke gudang (Lini III)

X_{ij} = jumlah pupuk yang diangkut dari gudang sumber (Lini II) ke gudang (Lini III)

S_i = Jumlah pupuk yang tersedia

 $D_j = Jumlah kebutuhan pupuk$

W_i = Kapasitas gudang tujuan

Dalam aplikasinya, terdapat 3 model untuk pupuk urea (Model A, Model B, dan Model C), 2 model untuk pupuk TSP, SP-36, ZA dan KCl (model A, dan Mode B). Untuk melihat model yang baik digunakan demgar pendekatan total biaya pengangkutan sesungguhny: dan hasil perhitungan Linier Programming.

Untuk menganalisis Economic Order Quantity digunakan formula sbb.:

$$EOQ = \sqrt{\frac{2DS}{I.C}}$$

Dimana:

EOQ = jumlah persediaan yang optimal di gudang penyimpanan

D = Biaya penyaluran/penjualan pupuk per bulan

S = Biaya penempatan pupuk per ton

I = Biaya pemeliharaan per bulan

C = Biaya satuan per macam barang

Untuk menganalisis Inventory turnover digunakan formula sob.:

- 1. Average Inventory = (Persediaan Awal Tahun + Persediaan Akhir Tahun) / 2
- Turnover = (Harga Pokok Penjualan per Jenis Pupuk) / average Inventory
- 3. Inventory Turnover = 300 hari / Turnover

PEMBAHASAN

1. Model Transportasi Distribusi Pupuk

Pola distribusi pupuk untuk wilayah pemasaran Jambi menggunakan angkutan sungai, angkutan darat dengan pola pendistribusian pupuk. Model transportasi pupuk urea sumber Palembang ke gudang tujuan di Propinsi Jambi dibedakan atas Model A, model B, dan Model C, yakni alat angkut yang digunakan kapal sungai dan truk, alat angkut yang digunakan truk dan alat angkut yang digunakan kapal sungai. Sedangkan model transportasi untuk pupuk yang lain dengan angkutan darat menggunakan Model A dan Model B,

yakni gudang sumber Palembang, Padang dan Kodya Jambi.

a. Pupuk Urea

Untuk model transportasi dengan faktor pembatas kapasitas gudang, distribusi pupuk urea Model A, memperlihatkan bahwa realisasi distribusi untuk gudang lini II Kodya Jambi dari gudang lini II Palembang yang menggunakan alat angkut sungai sesuai dengan hasil optimasi. Model transportasi distribusi urea Model B untuk gudang Muara Bulian, direkomendasikan menggunakan angkutan darat dari gudang lini II Palembang namun fluktuasi sebesar 10%. Sedangkan model transportasi urea Model C untuk

gudang Muaro Bungo, selain dari gudang lini II Palembang dan gudang lini II Padang juga dari gudang lini II Kodya Jambi, yang sesuai dengan rekomendasi.

Walaupun total realisasi biaya transportasi pupuk urea lebih besar dari hasil optimasi tetapi transportasi pupuk ini sudah lebih baik dilihat dari hasil optimasi total biaya dan ketersediaan pupuk digudang-gudang pemasaran wilayah Jambi.

Untuk melihat perbedaan antara jalur-jalur transportasi pada realisasi dengan jalur transportasi yang dihasilkan dari perencanaan *linear* programming, baik model yang sesungguhnya ataupun alternatif model dapat dilihat pada Tabel 2.

Tabel 1.
Perbandingan Total Biaya Transportasi Pupuk Urea antara Realisasi dengan Hasil Optimasi

			Hasil O	ptimasi				Realisasi		
Periode	F.K. 1	Kapasitas G	udang	F.	K. Perminta	an				
	A	В	С	A	В	С	A	В	C	
i	285.994.300	286.075.600	311.145.400	201.091.800	204.078.700	221.971.600	286.027.355	286.108.635	304.524.303	
	(0.016)	(0,012)	(-2,17)	(0,297)	(28,671)	(27,11)				
П	238.657.100	231.023.200	255.527.900	263.716.700	251.835.300	281.055.700	254.333.550	251.403.625	269.109.136	
	(6,163)	(5,106)	(5,05)	(3,689)	(-0,171)	(-4,41)				
Ш	245.351.700	245.491.500	266.619.900	246.581.000	246.712.000	272.631.800	348.442.206	347.461.540	376.614.296	
	(29,582)	(29,347)	(29,21)	(29,229)	(28,995)	(27,61)				
Totai	700.003.100	884.973.800	833.293.200	711.783.111	702.626.000	775.659.100	888.422.206	884.973 800	950.247.735	
	(13,364)	(13,827)	(12,31)	(19,559)	(20,604)	(8,37)				

Ket.: (): Persentase perbedaan dari realisasi

F.K.: Faktor Pembatas

A : Model sesungguhnya (dari gd. Lini II Palembang didistribusikan menggunakan alat darat dan sungai)

B : Model model (dari gd. Lini II Palembang didistribusikan menggunakan alat darat)

C : Model mode! (dari gd. Lini II Palembang didistribusikan menggunakan alat sungai)

Tabel 2.
Perbandingan Jalur Transportasi Pupuk Urea Realisasi dengan Hasil Optimasi

Gudang		Gudang Sumber										
Tujuan	Realisasi			Hasil LP Kapasitas Gudang*			Hasil LP Permintaan*			Keterangan		
	A	В	С	A	В	С	A	В	С			
Gd. K. Jambi	2,1,4	2	1	2,1,4	2,4	1,4	1,2,4	2,4	3,4	1. Palembang Sungai		
Gd. M. Bulian	2,1	2	1	2	2	1	2	- 2	1	2. Palembang Darat		
Gd. M. Bungo	4,2	4,2	4,1	2,1,3,4	2,3	1,3	4,2	2,3	1,3	Padang		
Gd. Bangko	2,4	2,4	1,4	2	2	1	2,4	2	1	4. Kodya Jambi		
Gd. Kerinci	3,4,2	3,4,2	3,4,2	3,4,2	3,2	3,1	3,4,2	3,2	3,4,1	* Faktor Pembatas		

Ket.: Gd.: Gudang

A : Model sesungguhnya

B, C: Model alternatif (Dari GPP Lini II Palembang menggunakan transportasi darat atau sungai)

b. Pupuk TSP

Sedangkan untuk model transportasi dengan faktor pembatas kapasitas gudang, distribusi pupuk TSP Model A, memperlihatkan bahwa realisasi distribusi untuk gudang lini II Kodya Jambi dari gudang lini II

faktor pembatas kapasitas gudang sobesar 131.819.510 atau 14,42 persen lebih kecil dari te biaya realisasi yang dilaksanakan.

Untuk melihat perbedaan antara jalur-ja transportasi pupuk TSP pada realisasi dengan ja

Tabel 3. Perbandingan Total Biaya Transportasi Pupuk TSP antara Realisasi dengan Hasil Optimasi

_		Hasil	engan Hasil Opti			
Periode	F.K. Kapas	sitas Gudang		ermintaan	Rea	alisasi
	A	В	A			46-509
I	81.247.000	81.247.000	05015	В	A	В
П	(16,73) 48.274.830	(16,73) 48.274.830	95.317.460 (2,31)	91.243.860 (6,94)	97.575.600	97.575.600
Ш	(10,86) 2.297.680	(10,86)	52.541.350 (2,98)	52.128.440 (3,74)	54.541.350	54.541.350
Total	(0,1) 13.819.510	2.297.680 (0,1)	1.228.904 (46,52)	2.297.680	2.297.680	2.297.680
() . P	(14,42) ntase perbedaan dari	131.819.510 (14,42)	149.087.714 (3,21)	145.669.980 (5,78)	154.028.700	154.028.700

F.K.: Faktor Pembatas : Model sesungguhnya : Model Alternatif B

> Tabel 4. Perbandingan Ja!ur Transportasi Pupuk TSP menurut Realisasi dengan Hasil Optimasi

Gudang Tujuan -			пэрогтазі Рирі	Gudang Su	mber	engan Hasil	Optimasi	
_	Realisasi		Hasil LP Kapasitas Gudang*		Hasil LP Permintaan*		Keterangan	
	A	В	A		7 671	nintaan*		
Gd. K. Jambi	2	2		D	A	В		
Gd. M. Bulian	2	2	2,4	2	2.4	2		
Gd. M. Bungo	3	2	-5	€	2	2	 Palembang Sungai 	
Gd. Bangko	3	3	3	3	3	2	Palembang Darat	
Gd. Kerinci	3.2	3	-	-	3.2	3	3. Padang	
	3,2	3,2	(<u>.</u>	-	3,2	3,2	 Kodya Jambi 	
Ket.: Gd.: Gudar	ng				3	3	* Faktor Pembatas	

A : Model sesungguhnya

: Model alternatif (Dari GPP Lini II Palembang menggunakan transportasi darat atau sungai)

Palembang yang menggunakan alat angkut sungai sesuai dengan hasil optimasi. Model transportasi distribusi TSP Model B untuk gudang Kerinci, direkomendasikan menggunakan angkutan darat dari gudang lini II Palembang namun relatif berfluktuasi.

Dari dua faktor pembatas dengan 2 model maka untuk mendapatkan optimasi total biaya transportasi pupuk TSP di wilayah pemasaran Jambi, total biaya optimasi yang terkecil hádala model A dan B dengan

transportasi yang dihasilkan dari perencanaan linear programming, baik model yang sesungguhnya ataupun alternatif model dapat dilihat pada Tabel 4.

c. Pupuk SP-36

Sedangkan untuk model transportasi dengan faktor pembatas kapasitas gudang, distribusi pupuk SP-36 Model A, memperlihatkan bahwa realisasi distribusi untuk gudang lini II Kodya Jambi dari gudang lini II Palembang yang menggunakan alat angkut sungai

Tabel 5.
Perbandingan Total Biaya Transportasi Pupuk SP-36 antara Realisasi dengan Hasil Optimasi

		Hasil C)ptimasi		Realisasi
Periode	F.K. Kapas	itas Gudang	F.K. Pe	rmintaan	
	A	В	A	В	A
1	37.916.000 (10,84)	37.916.000 (10,84)	0	0	42.524.000
II	60.659.950 (17,68)	60.659.950	37.744.220 (48,78)	39.931.820	73.689.100
Ш	115.046.000	115.046.000	78.360.780	(45,68) 99.823.200	148.019.050
Total	(22,28) 213.621.950 (19,15)	(22,28) 213.621.950 (19,15)	(47,06) 116.105.000 (56,06)	(32,56) 133.755.020 (50,32)	264.232.150

Ket. : () : Persentase perbedaan dari realisasi

F.K.: Faktor Pembatas

A: Model sesungguhnya

B: Model Alternatif

Tabel 6. Perbandingan Jalur Transportasi Pupuk SP-36 menurut Realisasi dengan Hasil Optimasi

Gudang	Gudang Sumber											
Tujuan —	Realisasi		Hasil LP Kapasitas Gudang*		Hasii LP Permintaan*		Keterangan					
	A	В	A	В	A	В	-					
Gd. K. Jambi	2	2	2	2	2,3	2	1 Palambana Sunasi					
Gd. M. Bulian	2	2	-	**	2	2	Palembang Sungai					
Gd. M. Bungo	3,2	3,2	3	3	3,2	2	2. Palembang Darat					
Gd. Bangko	3,2,4	3.2	3	. 3.	3,4,2	3	3. Padang					
Gd. Kerinci	3,2	3,2		-	3,4,2	3,2 3	 Kodya Jambi Faktor Pembatas 					

Ket.: Gd.: Gudang

A : Model sesungguhnya

B : Model alternatif (Dari GPP Lini II Palembang menggunakan transportasi darat atau sungai)

sesuai dengan hasii optimasi. Model transportasi distribusi SP-36 Model B untuk gudang Muara Bulian, Muara Bungo Bangko dan Kerinci, direkomendasikan menggunakan angkutan darat dari gudang lini II Palembang namun relatif berfluktuasi.

Total biaya optimasi seperti yang terlihat pada tabel 5. total biaya yang terendah hádala model A dengan factor pembatas permintaan yaitu sebesar Rp. 116.105.000 atau 56,06 persen lebih rendah dari total realisasi biaya transportasi pupuk SP-36 yang dilaksanakan oleh PT PUSRI. Jadi operasional transportasi pupuk SP-36 belum begitu baik mengingat selisih total biaya optimasi terendah dengan realisasi.

Perbedaan antara jalar-jalur transportasi pada

realisasi dengan jalar transportasi yang dihasilkan dari perencanaan optimasi dilihat pada tabel 6.

d. Pupuk ZA

Sedangkan untuk model transportasi dengan faktor pembatas kapasitas gudang, distribusi pupuk ZA Model A, memperlihatkan bahwa realisasi distribusi untuk gudang lini II Kodya Jambi dari gudang lini II Palembang yang menggunakan alat angkut sungai sesuai dengan hasil optimasi. Model transportasi distribusi ZA Model B untuk gudang Muara Bungo, direkomendasikan menggunakan angkutan darat dari gudang lini II Palembang namun relatif berfluktuasi.

Dari total biaya terlihat selisih yang besar antara realisasi dengan perhitungan biaya optimal maka model

Tabel 7.
Perbandingan Total Biaya Transportasi Pupuk ZA antara Realisasi dengan Hasil Optimasi

		Hasil (Optimasi			Realisasi	
Periode	F.K. Kapas	itas Gudang	F.K. Pe	rmintaan		, , , , , , , , , , , , , , , , , , , ,	
	A	В	A	В		Λ	
I	3.530.500	3.530.500	5.113.500	4.243.000		4.305.500	
	(18,01)	(18,01)	(-18,77)	(1,45)	-7	1.505.500	
11	8.945.500	8.945.500	9.077.500	9.077.500		12.191.000	
	(26,62)	(26,62)	(25,54)	(25,54)		12.171.000	
Ш	5.838.750	6.794.250	7.380.000	7.380.990		7.569.250	
	(22,59)	(10,24)	(2,50)	(2,50)		7.507.250	
Total	18.314.750	19.270.250	21.571.000	20.700.500		24.065.750	
	(23,89)	(19,93)	(10,37)	(13,98)		24.003.730	

Ket. : () : Persentase perbedaan dari realisasi

F.K.: Faktor Pembatas

A : Model sesungguhnya

B : Model Alternatif

Tabel 8. Perbandingan Jalur Transportasi Pupuk ZA menurut Realisasi dengan Hasil Optimasi

Gudang Tujuan		Gudang Sumber										
	Realisasi		Hasil LP Kapasitas Gudang*		Hasil LP Permintaan*		Keteranga					
	A	В	Λ	В	A	В						
Gd. K. Jambi	2	2	2,4	2	2,4	2	1.	Paiembang Sungai				
Gd. M. Bulian	-		2	-	4,2,3	3		Paiembang Darat				
Gd. M. Bungo	-	-	3	3	3	3		Padang				
Gd. Bangko	2	2	•		3	3		Kodya Jambi				
Gd. Kerinci	3	3		15.0	3	3		Faktor Pembatas				

Ket.: Gd.: Gudang

A : Model sesungguhnya

P : Modei alternatif (Dari GPP Lini II Palembang menggunakan transportasi darat atau sungai)

A yang dilaksanakan oleh PT PUSR! lebih tetpat untuk menekan total biaya pengangkutan pupuk ZA dari pada model yang lain, baik itu dengan faktor pembatas kapasitas gudang dan permintaan.

Perbedaan antara jalur-jalur transportasi pada realisasi dengan jalur transportasi yang dihasilkan dari perencanaan optimasi dapat dilihat pada tabel 8 berikut.

e. Pupuk KCl

Sedangkan untuk model transportasi dengan faktor pembatas kapasitas gudang, distribusi pupuk KCl Model A, memperlihatkan bahwa realisasi distribusi untuk gudang lini II Padang dari gudang lini II Palembang yang menggunakan alat angkut sungai sesuai dengan hasil optimasi. Model transportasi distribusi KCl Model B untuk gudang Muara Bungo, Bangko dan Kerinci, direkomendasikan menggunakan angkutan darat dari gudang lini II Palembang namun relatif berfluktuasi.

Dari total biaya terlihat selisih yang besar antara realisasi dengan perhitungan biaya optimal maka model A yang dilaksanakan oleh PT PUSRI lebih tetpat untuk menekan total biaya pengangkutan pupuk KCl dari pada model yang lain, baik itu dengan faktor pembatas kapasitas gudang dan permintaan.

Perbedaan antara jalur-jalur transportasi pada realisasi dengan jalur transportasi yang dihasilkan dari perencanaan optimasi dapat dilihat pada tabel 10.

Tabel 9.

Perbandingan Total Biaya Transportasi Pupuk KCl antara Realisasi dengan Hasil Optimasi

		Hasil C	ptimasi		Realisasi
Periode	F.K. Kapas	itas Gudang	F.K. Per	rmintaan	
	Á	В	A	В	A
1	44.163.200	44.163.200	35.866.520	36.537.550	56.278.000
	(21,53)	(21,53)	(36,27)	(35,08)	
П	20.025.000	20.025.000	13.890.750	28.092.750	27.350.000
	(26,78)	(26,78)	(49,21)	(-2,72)	
Ш	59.725.750	59.725.750	57.441.000	69.390.750	73.350.000
	(18,57)	(18,57)	(21,69)	(5,39)	
Total	123.913.950	123.913.950	107.198.270	134.021.050	156.978.000
	(21,06)	(21,06)	(31,71)	(14,67)	Suppression and the State of the

Ket.: (): Persentase perbedaan dari realisasi

F.K.: Faktor Pembatas A: Model sesungguhnya B: Model Alternatif

Tabel 10.
Perbandingan Jalur Transportasi Pupuk ZA menurut Realisasi dengan Hasil Optimasi

Gudang Tujuan —		Gudang Sumber											
	Realisasi		Hasil LP Kapasitas Gudang*		Hasil LP Permintaan*		Keterangan						
	A	В	A	В	A	В							
Gd. K. Jambi	2,3	2,3	4,2	2	4,3,2	3,2	1.	Palembang Sungai					
Gd. M. Bulian	3,2	3,2	-		3.2,4	3,2		Palembang Darat					
Gd. M. Bungo	3	3	3	3	3	3	3.	Padang					
Gd Bangko	3	3	-	3	3	3	4.	Kodya Jambi					
Gd. Kerinci	3	3	2	-	3	3	*	Faktor Pembatas					

Ket.: Gd.: Gudang

A : Model sesunggunnya

3 : Model alternatif (Dari GPP Lini II Palembang menggunakan transportasi darat atau sungai)

2. Analisis Persediaan (Economic Order Quantity)

Pengendalian persediaan pupuk digudang wilayah pemasaran Jambi rata-rata diatas persediaan optimal dan dengan tingkat perputaran persediaan yang masih rendah, terutama SP-36. Dimana hanya pupuk TSP yang persediaannya dibawah persediaan optimal dan tingkat perputaran persediaan yang tinggi. Yaitu gudang Kodya Jambi dan Kerinci karena gudang Kodya Jambi selain sebagai gudang sumber juga merupakan gudang penyalur bagi Kodya Jambi sendiri dan Kabupaten Tanjung Jabung sedangkan Kabupaten Kerinci

merupakan daerah pertanian yang intensif dalam penggunaan pupuk terutama tanaman padi.

Untuk perputaran persediaan pupuk urea di gudang Kodya Jambi lebih rendah dari jenis pupuk TSP dan ZA karena penggunaan pupuk urea lebih banyak tersalur ke kegiatan penanaman lain seperti perkebunan kelapa sawit. Dari keempat jenis pupuk yang ada digudang pemasaran Jambi, jenis pupuk TSP yang tingkat perputaran persediaan sangat tinggi yaitu selama 8 hari dan terendah adalah SP-36 yaitu selama 1.071 hari. Kondisi ini disebabkan penyaluran pupuk TSP yang terbatas dan sifatnya menghabiskan persediaan digudang lini II.

PENUTUP

Model transportasi pendistribusian pupuk di Propinsi Jambi sangat ditentukan oleh jenis pupuk, tujuan dan kendala yang dimiliki. Dari hasil penelitian dapat disimpulkan bahwa model transportasi pendistribusian pupuk oleh PT PUSRI telah menunjukan hasil yang cukup baik yang terlihat dari rencana kegiatan yang hampir mendekati optimal. Walaupun demikian masih perlu upaya untuk menekan total biaya transportasi untuk mencapai kondisi optimal. Untuk subsistem persediaan ternyata gudang wilayah pemasaran Jambi terhasil hasil yang bervariasi mulai dari tingkat perputaran yang tinggi, sampai dengan tingkat perputaran rendah.

DAFTAR PUSTAKA

- Anonim. Laporan Tahun Distribusi Pupuk PT PUSRI, Palembang. 2002.
- Harold, T.A., Ritchey, J.A. dan Heilley, O.S. Manufacturing Organization and Management. Prentice Hall Inc. New Jersey. 1987.
- Kotler, P. Manajemen Pemasaran II. Terjemahan Gunawan Hutauruk. Penerbit Erlangga, Jakarta. 2004.
- Mubyarto. Pengantar Ekonomi Pertanian. LP3ES Jakarta. 2004.
- Prawiranegara, A.S. Pengendalian Ekspor Pupuk Urea dalam Upaya Mengamankan Pengadaan Pupuk dalam Negeri (Tesis). LPMI Jakarta. 1992.
- Supranto, J. Linier Programming. Lembaga Penerbit Fakultas Ekonomi Universitas Indonesia, Jakarta. 1998.
- Stanton, W.J. Prinsip Pemasaran. Terjemahan Y. Lamarta. Erlangga. Jakarta. 1997.
- Taha, A.H. Operations Research. Macmillan Publishing C. Inc. New Jersey USA. 2001.