PENERAPAN DATA MINING ANALISIS POLA PEMBELIAN MENGGUNAKAN ALGORITMA SELF ORGANIZING MAP & FP-GROWTH DI DE CAFE RESTAURANT HOTEL MERCURE CIKINI

Romario, Andika (2025) PENERAPAN DATA MINING ANALISIS POLA PEMBELIAN MENGGUNAKAN ALGORITMA SELF ORGANIZING MAP & FP-GROWTH DI DE CAFE RESTAURANT HOTEL MERCURE CIKINI. S1 thesis, Universitas Jambi.

[img] Text
ABSTRAK.pdf

Download (97kB)
[img] Text
BAB I.pdf

Download (204kB)
[img] Text
BAB V.pdf

Download (150kB)
[img] Text
COVER.pdf

Download (52kB)
[img] Text
DAFTAR PUSTAKA.pdf

Download (126kB)
[img] Text
FULL SKRIPSI.pdf
Restricted to Repository staff only

Download (3MB)
[img] Text
HALAMAN PENGESAHAN.pdf

Download (169kB)
[img] Text
HALAMAN PENGESAHAN.pdf

Download (169kB)
Official URL: https://repository.unja.ac.id/

Abstract

Penelitian ini bertujuan menganalisis pola pembelian pelanggan di De Cafe Restaurant Hotel Mercure Cikini dengan pendekaan data mining menggunakan algoritma Self-Organizing Map dan FP-Growth. Metode SelfOrganizing Map digunakan untuk melakukan segmentasi pelanggan berdasarkan data transaksi penjualan yang diperoleh selama dua bulan. Tahap praproses dilakukan dengan pembersihan data, seleksi atribut dan normalisasi data mengunakan teknik min-max scalling. Hasil segmentasi menghasilkan tiga cluster pelanggan dengan karakteristik yang berbeda berdasarkan waktu kunjungan dan tingkat pengeluaran. Selanjutnya, algoritma FPGrowth diterapkan untuk menemukan pola pembelian produk yang sering dibeli bersamaan pada setiap cluster. Analisis menghasilkan beberapa aturan asosiasi dengan nilai support dan confidence yang signifikan. Salah satu pola yang ditemukan adalah pembelian Grilled Salmon Pasta Mushroom yang sering diikuti dengan pembelian Healthy Fruit Salad pada cluster tertentu. Temuan ini dapat dijadikan rekomendasi strategi pemasaran, seperti penyusunan paket menu, promodi bundling, dan pengelolaan stok produk yang lebih efektif. Penelitian ini diharapkan dapat membantu manajemen restoran dalam meningkatkan pelayanan dan pendapatan melalui pemanfaatan data transaksi yang optimal. This study aims to analyze customer purchasing patterns at De Café Restaurant Hotel Mercure Cikini using a data mining approach with the Self-Organizing Map (SOM) and FP-Growth algorithms. The SelfOrganizing Map method is applied to segment customers based on sales transaction data collected over two months. The preprocessng stage includes data cleaning, attribute selection, and data normalization using minmax scaling. The segmentation process resulted in three distinct customers cluster characterized by visit time and spending levels..Furthermore,, the FP-Growth algorithm was applied to discover frequent purchasing patterns with each cluster. The analysis revealed several association rules with significant support and confidence values. One example is the frequent purchase of Grilled Salmon Pasta Mushroom followed by Healthy Fruit Salad in a specific cluster. These findings can be used as recommendation for marketing strategies such as menu bundling, promotional offers, and more efficient product stock management. This research is expected to help restaurant management improve service quality and revenue through optimal utilization of transaction data.

Type: Thesis (S1)
Uncontrolled Keywords: Data mining, Clustering, Self-Organizing Map, FP-Growth, and Market Basket Analysis.
Subjects: L Education > L Education (General)
Divisions: Fakultas Sains dan Teknologi > Sistem Informasi
Depositing User: ROMARIO
Date Deposited: 08 Jul 2025 03:59
Last Modified: 08 Jul 2025 03:59
URI: https://repository.unja.ac.id/id/eprint/81824

Actions (login required)

View Item View Item