Rio Gilang, Divo and Khaira, Ulfa and Hutabarat, Benedika Ferdian (2025) RANCANG BANGUN APLIKASI MOBILE UNTUK IDENTIFIKASI PENYAKIT PADA TANAMAN JERUK METODE EXTREME PROGRAMMING. S1 thesis, Universitas Jambi.
![]() |
Text
ABSTRACK.pdf Download (63kB) |
![]() |
Text
BAB I.pdf Download (161kB) |
![]() |
Text
BAB V.pdf Download (130kB) |
![]() |
Text
DAFTAR PUSTAKA.pdf Download (179kB) |
![]() |
Text
RANCANG BANGUN APLIKASI MOBILE UNTUK IDENTIFIKASI PENYAKIT PADA TANAMAN JERUK METODE EXTREME PROGRAMMING.pdf Restricted to Repository staff only Download (5MB) |
![]() |
Text
COVER.pdf Download (87kB) |
![]() |
Text
LEMBAR PENGESAHAN.pdf Download (84kB) |
Abstract
Abstrak Jeruk merupakan salah satu komoditas pertanian penting yang memiliki nilai ekonomi tinggi dan permintaan pasar yang besar. Namun, produktivitas dan kualitas jeruk sering terancam oleh penyakit pada kulit, seperti Citrus Bacterial Spot, Citrus Canker, dan Huanglongbing (HLB), yang dapat menurunkan nilai jual dan daya saing jeruk lokal. Deteksi penyakit secara manual memerlukan waktu dan keahlian khusus, sehingga dibutuhkan solusi berbasis teknologi yang cepat dan akurat. Penelitian ini bertujuan merancang dan membangun aplikasi mobile untuk identifikasi penyakit kulit jeruk menggunakan metode Extreme Programming (XP) serta mengevaluasi fungsionalitas sistem. Model klasifikasi citra dibangun menggunakan arsitektur MobileNetV2 dengan dataset berjumlah 750 gambar berformat .jpg/.jpeg, terbagi dalam lima kelas: Sehat, Greening, Citrus Canker, Black Spot, dan Not Orange. Tahapan XP meliputi planning, design, coding, dan testing. Hasil pengujian menunjukkan akurasi validasi 95,33% dengan loss 0,1664. Pengujian kinerja memperlihatkan penggunaan memori awal ±200 KiB dengan puncak ±450 KiB, serta penggunaan CPU 0–22%, menunjukkan efisiensi aplikasi. Aplikasi ini mampu mengidentifikasi penyakit kulit jeruk secara cepat dan akurat, sehingga berpotensi membantu petani dalam pengambilan keputusan pengelolaan tanaman.. Kata kunci: aplikasi mobile, extreme programming, identifikasi penyakit jeruk, klasifikasi citra, mobilenetv2. Abstract Oranges are one of the most important agricultural commodities with high economic value and significant market demand. However, the productivity and quality of oranges are often threatened by skin diseases such as Citrus Bacterial Spot, Citrus Canker, and Huanglongbing (HLB), which can reduce their market value and competitiveness. Manual detection of these diseases requires time and specific expertise, creating the need for a technology-based solution that is fast and accurate. This study aims to design and develop a mobile application for citrus peel disease identification using the Extreme Programming (XP) method, as well as to evaluate the system’s functionality. The image classification model was built using the MobileNetV2 architecture with a dataset of 750 .jpg/.jpeg images, divided into five classes: Healthy, Greening, Citrus Canker, Black Spot, and Not Orange. The XP stages applied include planning, design, coding, and testing. The experimental results showed a validation accuracy of 95.33% with a validation loss of 0.1664. Performance testing indicated an initial memory usage of ±200 KiB, peaking at ±450 KiB, and CPU usage ranging from 0% to 22%, demonstrating application efficiency. This application can identify citrus peel diseases quickly and accurately, making it a potential decision-support tool for farmers in managing their crops. Keywords: citrus disease identification, extreme programming, image classification, mobile application, mobilenetv2.
Type: | Thesis (S1) |
---|---|
Uncontrolled Keywords: | aplikasi mobile, extreme programming, identifikasi penyakit jeruk, klasifikasi citra, mobilenetv2. |
Subjects: | L Education > L Education (General) |
Divisions: | Fakultas Sains dan Teknologi > Sistem Informasi |
Depositing User: | GILANG |
Date Deposited: | 20 Oct 2025 08:30 |
Last Modified: | 20 Oct 2025 08:30 |
URI: | https://repository.unja.ac.id/id/eprint/87075 |
Actions (login required)
![]() |
View Item |